Skip to main content
Log in

Effects of exposure to hyperbaric oxygen on oxidative stress in rats with type II collagen-induced arthritis

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Arthritis was induced in 9-week-old female Dark Agouti rats by injecting type II collagen. Serum levels of the derivatives of reactive oxygen metabolites (dROMs), which are oxidative stress markers, and C-reactive protein (CRP) in arthritic rats that were exposed to a pressure of 1.25 atmospheres absolute and an oxygen concentration of 36% for 3 weeks (arthritis + HBO group) were compared to those of control rats (control group) and arthritic rats that were not exposed to hyperbaric oxygen (arthritis group). The body weights of the arthritis and arthritis + HBO groups were lower than that of the control group, whereas no difference in the body weight was observed between the arthritis and arthritis + HBO groups. The serum levels of dROMs and CRP in the arthritis group were higher than those in the control and arthritis + HBO groups. No difference in the serum level of CRP was observed between the control and arthritis + HBO groups. These results indicate that the conditions of hyperbaric oxygen exposure used in this study are effective for reducing the levels of reactive oxygen species, which are overproduced during arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Miletić T, Kovačević-Jovanović V, Vujić V et al (2007) Reactive oxygen species (ROS), but not nitric oxide (NO), contribute to strain differences in the susceptibility to experimental arthritis in rats. Immunobiology 212:95–105

    Article  PubMed  Google Scholar 

  2. Henrotin Y, Kurz B, Aigner T (2005) Oxygen and reactive oxygen species in cartilage degradation: friends or foes? Osteoarthritis Cartilage 13:643–654

    Article  CAS  PubMed  Google Scholar 

  3. Henrotin YE, Bruckner P, Pujol JP (2003) The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthritis Cartilage 11:747–755

    Article  CAS  PubMed  Google Scholar 

  4. Terkeltaub R, Zachariae C, Santoro D et al (1991) Monocyte-derived neutrophil chemotactic factor/interleukin-8 is a potential mediator of crystal-induced inflammation. Arthritis Rheum 34:894–903

    Article  CAS  PubMed  Google Scholar 

  5. Kamezaki F, Yamashita K, Kubara T et al (2008) Derivatives of reactive oxygen metabolites correlates with high-sensitivity C-reactive protein. J Atheroscler Thromb 15:206–212

    CAS  PubMed  Google Scholar 

  6. Hirose H, Kawabe H, Komiya N, Saito I (2009) Relations between serum reactive oxygen metabolites (ROMs) and various inflammatory and metabolic parameters in a Japanese population. J Atheroscler Thromb 16:77–82

    CAS  PubMed  Google Scholar 

  7. Ishihara A, Kawano F, Okiura T et al (2005) Hyperbaric exposure with high oxygen concentration enhances oxidative capacity of neuromuscular units. Neurosci Res 52:146–152

    Article  CAS  PubMed  Google Scholar 

  8. Matsumoto A, Okiura T, Morimatsu F et al (2007) Effects of hyperbaric exposure with high oxygen concentration on the physical activity of developing rats. Dev Neurosci 29:452–459

    Article  CAS  PubMed  Google Scholar 

  9. Hitchon CA, El-Gabalawy HS (2004) Oxidation in rheumatoid arthritis. Arthritis Res Ther 6:265–278

    Article  PubMed  Google Scholar 

  10. Taylor PC, Sivakumar B (2005) Hypoxia and angiogenesis in rheumatoid arthritis. Curr Opin Rheumatol 17:293–298

    Article  PubMed  Google Scholar 

  11. Woodruff T, Blake DR, Freeman J et al (1986) Is chronic synovitis an example of reperfusion injury? Ann Rheum Dis 45:608–611

    Article  CAS  PubMed  Google Scholar 

  12. Cross CE, Halliwell B, Borish ET et al (1987) Oxygen radicals and human disease. Ann Intern Med 107:526–545

    CAS  PubMed  Google Scholar 

  13. Blake DR, Merry P, Unsworth J et al (1989) Hypoxia-reperfusion injury in the inflamed human joint. Lancet 11:289–293

    Article  Google Scholar 

  14. Nagatomo F, Gu N, Fujino H et al (2009) Skeletal muscle characteristics of rats with obesity, diabetes, hypertension, and hyperlipidemia. J Atheroscler Thromb (in press)

  15. Trentham DE, Townes AS, Kang AH (1977) Autoimmunity to type II collagen: an experimental model of arthritis. J Exp Med 146:857–868

    Article  CAS  PubMed  Google Scholar 

  16. Courtenay JS, Dallman MJ, Dayan AD et al (1980) Immunisation against heterologous type II collagen induces arthritis in mice. Nature 283:666–668

    Article  CAS  PubMed  Google Scholar 

  17. Okiura T, Nagatomo F, Gu N et al (2008) Bone density of the femur and fiber cross-sectional area and oxidative enzyme activity of the tibialis anterior muscle in type II collagen-induced arthritic mice. J Physiol Sci 58:221–227

    Article  PubMed  Google Scholar 

  18. Jikimoto T, Nishikubo Y, Koshiba M et al (2001) Thioredoxin as a biomarker for oxidative stress in patients with rheumatoid arthritis. Mol Immunol 38:765–772

    Article  Google Scholar 

  19. Jaswal S, Mehta HC, Sood AK, Kaur J (2003) Antioxidant status in rheumatoid arthritis and role of antioxidant therapy. Clin Chim Acta 338:123–129

    Article  CAS  PubMed  Google Scholar 

  20. Goldring SR (2002) Pathogenesis of bone erosions in rheumatoid arthritis. Curr Opin Rheumatol 14:406–410

    Article  PubMed  Google Scholar 

  21. Miossec P (2004) An update on the cytokine network in rheumatiod arthritis. Curr Opin Rheumatol 16:218–222

    Article  CAS  PubMed  Google Scholar 

  22. Salvemini D, Mazzon E, Dugo L et al (2001) Amelioration of joint disease in rat model of collagen-induced arthritis by M40403, a superoxide dismutase mimetric. Arthritis Rheum 44:2909–2921

    Article  CAS  PubMed  Google Scholar 

  23. Jiménez-Caliani AJ, Jiménez-Jorge S, Molinero P et al (2005) Dual effect of melatonin as proinflammatory and antioxidant in collagen-induced arthritis in rats. J Pineal Res 38:93–99

    Article  PubMed  Google Scholar 

  24. Houssiau FA, Devogelaer JP, Van Damme J et al (1988) Interleukin-6 in synovial fluid and serum of patients with rheumatoid arthritis and other inflammatory arthritides. Arthritis Rheum 31:784–788

    Article  CAS  PubMed  Google Scholar 

  25. Madhok R, Crilly A, Watson J, Capell HA (1993) Serum interleukin 6 levels in rheumatoid arthritis: correlations with clinical and laboratory indices of disease activity. Ann Rheum Dis 52:232–234

    Article  CAS  PubMed  Google Scholar 

  26. Yeh ETH (2004) CRP as a mediator of disease. Circulation 109(suppl II):11–14

    Google Scholar 

  27. Cuzzocrea S, McDonald MC, Mota-Filipe H et al (2000) Beneficial effects of tempol, a membrane-permeable radical scavenger, in a rodent model of collagen-induced arthritis. Arhtritis Rheum 43:320–328

    Article  CAS  Google Scholar 

  28. Dai L, Claxson A, Marklund SL et al (2003) Amelioration of antigen-induced arthritis in rats by transfer of extracellular superoxide dismutase and catalase genes. Gene Ther 10:550–558

    Article  CAS  PubMed  Google Scholar 

  29. Cuzzocrea S, Mazzon E, di Paola R et al (2005) Synergistic interaction between methotrexate and a superoxide dismutase mimetic. Pharmacologic and potential clinical significance. Arthritis Rheum 52:3755–3760

    Article  CAS  PubMed  Google Scholar 

  30. Zhou H, Wong YF, Wang J et al (2008) Sinomenine ameliorates arthritis via MMPs, TIMPs, and cytokines in rats. Biochem Biophys Res Commun 376:352–357

    Article  CAS  PubMed  Google Scholar 

  31. Hultqvist M, Olofsson P, Gelderman KA et al (2006) A new arthritis therapy with oxidative burst inducers. PLoS Med 3: 1625–1636 (e348)

    Google Scholar 

  32. Lee EY, Lee CL, Lee K et al (2007) Alpha-lipoic acid suppresses the development of collagen-induced arthritis and protects against bone destruction in mice. Rheumatol Int 27:225–233

    Article  CAS  PubMed  Google Scholar 

  33. Tibbles PM, Edelsberg JS (1996) Hyperbaric-oxygen therapy. N Engl J Med 334:1642–1648

    Article  CAS  PubMed  Google Scholar 

  34. Leach RM, Rees PJ, Wilmshurst P (1998) ABC of oxygen. Hyperbaric oxygen therapy. BMJ 317:1140–1143

    CAS  PubMed  Google Scholar 

  35. Caplan ES (2000) Hyperbaric oxygen. J Pediatr Infect Dis 19:151–152

    CAS  Google Scholar 

  36. Nagatomo F, Fujino H, Takeda I, Ishihara A (2009) Effects of hyperbaric oxygenation on blood pressure levels of spontaneously hypertensive rats. Clin Exp Hypertens. Accepted

  37. Jayson MI, Dixon AS (1970) Intra-articular pressure in rheumatoid arthritis of the knee. 3. Pressure changes during joint use. Ann Rheum Dis 29:401–408

    Article  CAS  PubMed  Google Scholar 

  38. Yasuda K, Aoki N, Adachi T et al (2006) Hyperbaric exposure with high oxygen concentration inhibits growth-associated increase in the glucose level of diabetic Goto-Kakizaki rats. Diabetes Obes Metab 8:714–715

    Article  CAS  PubMed  Google Scholar 

  39. Matsumoto A, Nagatomo F, Yasuda K et al (2007) Hyperbaric exposure with high oxygen concentration improves altered fiber types in the plantaris muscle of diabetic Goto-Kakizaki rats. J Physiol Sci 57:173–176

    Google Scholar 

  40. Yasuda K, Adachi T, Gu N et al (2007) Effects of hyperbaric exposure with high oxygen concentration on glucose and insulin levels and skeletal muscle-fiber properties in diabetic rats. Muscle Nerve 35:337–343

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest statement

The authors declare that they have no conflict of interest related to the publication of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ishihara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagatomo, F., Gu, N., Fujino, H. et al. Effects of exposure to hyperbaric oxygen on oxidative stress in rats with type II collagen-induced arthritis. Clin Exp Med 10, 7–13 (2010). https://doi.org/10.1007/s10238-009-0064-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-009-0064-y

Keywords

Navigation