Skip to main content
Log in

Anvil-profiled penetrating keratoplasty: load resistance evaluation

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The aim of this study was to qualitatively evaluate the biomechanical load resistance of different surgical wound configurations (mushroom, zig-zag, anvil and conventional trephination) in penetrating keratoplasty (PK) by designing a 2D and a 3D finite-element biomechanical model of the cornea. A mathematical model of the human cornea was developed, and different geometric configurations for PK were designed. The internal pressure was raised until the wound misaligned; wound prolapse then occurred. Better wound resistance was found in all the laser trephined profiles tested in comparison with the conventional straight one. The anvil profile was more resistant to the increasing internal pressure than was the mushroom or the zig-zag pattern. Thanks to its greater mechanical load resistance, the anvil profile made possible the apposition of a restricted number of sutures and early suture removal. These advantages can contribute to a faster visual recovery in patients undergoing penetrating keratoplasty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bahar I, Kaiserman I, McAllum P, Rootman D (2008) Femtosecond laser-assisted penetrating keratoplasty: stability evaluation of different wound configurations. Cornea 27:209 11

    Google Scholar 

  • Busin M, Arffa RC (2005) Microkeratome-assisted mushroom keratoplasty with minimal endothelial replacement. Am J Ophthalmol 140:138–40

    Article  Google Scholar 

  • Cabrera Fernndez D, Niazy AM, Kurtz RM, Djotyan GP, Juhasz T (2005) Finite element analysis applied to cornea reshaping. J Biomed Opt 10:064018

    Article  Google Scholar 

  • Canovetti A, Malandrini A, Lenzetti I, Rossi F, Pini R, Menabuoni L (2014) Laser-assisted penetrating keratoplasty: 1-year results in patients using a laser-welded anvil-profiled graft. Am J Ophthalmol 158:664–670

    Article  Google Scholar 

  • Chamberlain WD, Rush SW, Mathers WD, Cabezas M, Fraunfelder FW (2011) Comparison of femtosecond laser-assisted keratoplasty versus conventional penetrating keratoplasty. Ophthalmology 118:486–91

    Article  Google Scholar 

  • Farid M, Kim M, Steinert RF (2007) Results of penetrating keratoplasty performed with a femtosecond laser zigzag incision initial report. Ophthalmology 114:2208–2212

    Article  Google Scholar 

  • Gaster RN, Dumitrascu O, Rabinowitz YS (2012) Penetrating keratoplasty using femtosecond laser-enabled keratoplasty with zig-zag incisions versus a mechanical trephine in patients with keratoconus. Br J Ophthalmol 969:1195–9

    Article  Google Scholar 

  • Ignacio TS, Nguyen TB, Chuck RS, Kurtz RM, Sarayba MA (2006) Top hat wound configuration for penetrating keratoplasty using the femtosecond laser: a laboratory model. Cornea 25:33640

    Article  Google Scholar 

  • Kim JH, Choi SK, Lee D (2009) The comparison of femtosecond laser-assisted penetrating keratoplasty with conventional surgery in terms of endothelial safety: ex vivo study using porcine eyes. Cornea 28:812 6

    Google Scholar 

  • Kook D, Derhartunian V, Bug R, Kohnen T (2009) Top-hat shaped corneal trephination for penetrating keratoplasty using the femtosecond laser: a histomorphological study. Cornea 28:795 800

    Article  Google Scholar 

  • Lee HP, Zhuang H (2012) Biomechanical study on the edge shapes for penetrating keratoplasty. Comput Methods Biomech Biomed Eng 15:1071–79. Phthalmol, 143, 689691 (2007)

  • Malta JB, Soong HK, Shtein R, Banitt M, Musch DC, Sugar A, Mian SI (2009) Femtosecond laser assisted keratoplasty: laboratory studies in eye bank eyes. Curr Eye Res 34:18 25

    Article  Google Scholar 

  • Menabuoni L, Canovetti A, Rossi F, Malandrini A, Lenzetti I, Pini R (2013) The ’anvil’ profile in femtosecond laser-assisted penetrating keratoplasty. Acta Ophthalmol 91:e494–5

    Article  Google Scholar 

  • Nassar GA, Arfeen SAES (2017) Correlation between the graft-host junction of penetrating keratoplasty by anterior segment-optical coherence tomography and the magnitude of postoperative astigmatism. Indian J Ophthalmol 65:574–8

    Article  Google Scholar 

  • Nuzzo V, Aptel F, Savoldelli M, Plamann K, Peyrot D, Deloison F, Donate D, Legeais JM (2009) Histologic and ultrastructural characterization of corneal femtosecond laser trephination. Cornea 28:908–13

    Article  Google Scholar 

  • Pandol A, Manganiello F (2006) A model for the human cornea: constitutive formulation and numerical analysis. Biomech Model Mechanobiol 5:23746

    Google Scholar 

  • Pini R, Rossi F, Ratto F (2011) Laser surgery. In: Popp J, Tuchin VV, Chiou A, Heinemann SH (eds) Handbook of biophotonics. Wiley, New York, pp 911–937

    Google Scholar 

  • Price FW Jr, Price MO (2008) Femtosecond laser-shaped penetrating keratoplasty: one-year results utilizing a top-hat configuration. Am J Ophthalmol 145:210–214

    Article  Google Scholar 

  • Price FW Jr, Price MO, Jordan CS (2008) Safety of incomplete incision patterns in femtosecond laser-assisted penetrating keratoplasty. J Cataract Refract Surg 34:2099–103

    Article  Google Scholar 

  • Raj A, Dhasmana R, Bahadur H, Nagpal RC (2017) Monitoring the appositions of posterior graft-host junctions with anterior segment optical coherence tomogram after penetrating keratoplasty. Int Ophthalmol 37:357–64

    Article  Google Scholar 

  • Rossi F, Pini R, Menabuoni L (2007) Experimental and model analysis on the temperature dynamics during diode laser welding of the cornea. J Biomed Opt 12:014031

    Article  Google Scholar 

  • Rossi F, Matteini P, Ratto F, Menabuoni L, Lenzetti I, Pini R (2010) All laser corneal surgery by combination of femtosecond laser ablation and laser tissue welding. In: Tuchin VV (ed) Handbook of photonics for biomedical science. CRC Press Taylor and Francis Group, Boca Raton, pp 799–810

    Chapter  Google Scholar 

  • Steinert RF, Ignacio TS, Sarayba MA (2007) Top-hat shaped penetrating keratoplasty using the femtosecond laser. Am J Ophthalmol 143:689–691

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the LA ROSES experiment of the FP7 ECHORD++ project for partial support of this study and removal of the per cent signs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Rossi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canovetti, A., Rossi, F., Rossi, M. et al. Anvil-profiled penetrating keratoplasty: load resistance evaluation. Biomech Model Mechanobiol 18, 319–325 (2019). https://doi.org/10.1007/s10237-018-1083-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-018-1083-y

Keywords

Navigation