Skip to main content

Biomechanics and Wound Healing in the Cornea

  • Living reference work entry
  • First Online:
Albert and Jakobiec's Principles and Practice of Ophthalmology

Abstract

Variations in the biomechanical and wound healing properties of the cornea undermine the predictability and stability of refractive surgery and contribute to discrepancies between attempted and achieved visual outcomes after corneal refractive procedures. Furthermore, patients predisposed to biomechanical failure or abnormal wound healing can experience serious complications such as corneal ectasia or clinically significant corneal haze. In this review, we describe the cornea as a complex structural composite material with pronounced anisotropy and heterogeneity, summarize current understanding of major biomechanical and reparative pathways that contribute to the corneal response to laser vision correction, and review the role of these processes in postoperative complications such as ectasia and stromal fibrosis (scarring haze). Differences in the corneal response after photorefractive keratectomy (PRK), laser in situ keratomileusis (LASIK), and small-incision lenticule extraction (SMILE) are reviewed. Surgical and disease models that account for corneal geometric data, microstructural anatomy, material properties, and wound healing behavior have the potential to improve clinical outcomes and minimize complications but depend on the identification of preoperative predictors of biomechanical and wound healing responses in individual patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Roberts C. The cornea is not a piece of plastic. J Refract Surg. 2000;16(4):407–13.

    Article  CAS  Google Scholar 

  2. Munnerlyn CR, Koons SJ, Marshall J. Photorefractive keratectomy: a technique for laser refractive surgery. J Cataract Refract Surg. 1988;14(1):46–52.

    Article  CAS  Google Scholar 

  3. Netto M, Wilson SE. Corneal wound healing relevance to wavefront guided laser treatments. Ophthalmol Clin N Am. 2004;17(2):225–31. https://doi.org/10.1016/j.ohc.2004.03.002.

    Article  Google Scholar 

  4. Litwin KL, Moreira H, Ohadi C, McDonnell PJ. Changes in corneal curvature at different excimer laser ablative depths. Am J Ophthalmol. 1991;111(3):382–4.

    Article  CAS  Google Scholar 

  5. Reinstein DZ, Gobbe M, Archer TJ, Silverman RH, Coleman J. Epithelial thickness in the normal cornea: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg. 2008;24(6):571–81. https://doi.org/10.3928/1081597X-20080601-05.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Reinstein DZ, Archer TJ, Gobbe M. Refractive and topographic errors in topography-guided ablation produced by epithelial compensation predicted by 3D Artemis VHF digital ultrasound stromal and epithelial thickness mapping. J Refract Surg. 2012;28(9):657–63. https://doi.org/10.3928/1081597X-20120815-02.

    Article  PubMed  Google Scholar 

  7. Jue B, Maurice DM. The mechanical properties of the rabbit and human cornea. J Biomech. 1986;19(10):847–53. https://doi.org/10.1016/0021-9290(86)90135-1.

    Article  CAS  PubMed  Google Scholar 

  8. Komai Y, Ushiki T. The three-dimensional organisation of collagen fibrils in the human cornea and sclera. Investig Ophthalmol Vis Sci. 1991;32(8):2244–58.

    CAS  Google Scholar 

  9. Seiler T, Matallana M, Sendler S, Bende T. Does Bowman’s layer determine the biomechanical properties of the cornea? Refract Corneal Surg. 1992;8(2):139–42.

    Article  CAS  Google Scholar 

  10. Wilson SE, Hong JW. Bowman’s layer structure and function: critical or dispensable to corneal function? A hypothesis. Cornea. 2000;19(4):417–20.

    Article  CAS  Google Scholar 

  11. Winkler M, Chai D, Kriling S, Nien CJ, Brown DJ, Jester B, et al. Nonlinear optical macroscopic assessment of 3-D corneal collagen organization and axial biomechanics. Investig Ophthalmol Vis Sci. 2011;52(12):8818–27. https://doi.org/10.1167/iovs.11-8070.

    Article  Google Scholar 

  12. Dua HS, Faraj LA, Said DG, Gray T, Lowe J. Human corneal anatomy redefined: a novel pre-Descemet’s layer (Dua’s layer). Ophthalmology. 2013;120(9):1778–85. https://doi.org/10.1016/j.ophtha.2013.01.018.

    Article  PubMed  Google Scholar 

  13. Schlötzer-Schrehardt U, Bachmann BO, Tourtas T, Torricelli AAM, Singh A, González S, et al. Ultrastructure of the posterior corneal stroma. Ophthalmology. 2015;122(4):693–9. https://doi.org/10.1016/j.ophtha.2014.09.037.

    Article  PubMed  Google Scholar 

  14. Smolek MK, McCarey BE. Interlamellar adhesive strength in human eyebank corneas. Investig Ophthalmol Vis Sci. 1990;31(6):1087–95.

    CAS  Google Scholar 

  15. Petsche SJ, Chernyak D, Martiz J, Levenston ME, Pinsky PM. Depth-dependent transverse shear properties of the human corneal stroma. Investig Ophthalmol Vis Sci. 2012;53(2):873. https://doi.org/10.1167/iovs.11-8611.

    Article  Google Scholar 

  16. Meek KM, Boote C. The use of X-ray scattering techniques to quantify the orientation and distribution of collagen in the corneal stroma. Prog Retin Eye Res. 2009;28(5):369–92. https://doi.org/10.1016/j.preteyeres.2009.06.005.

    Article  CAS  PubMed  Google Scholar 

  17. Abahussin M, Hayes S, Cartwright NEK, Kamma-Lorger CS, Khan Y, Marshall J, et al. 3D collagen orientation study of the human cornea using X-ray diffraction and femtosecond laser technology. Investig Ophthalmol Vis Sci. 2009;50(11):5159–64. https://doi.org/10.1167/iovs.09-3669.

    Article  Google Scholar 

  18. Muller LJ, Pels E, Vrensen GFJM. The specific architecture of the anterior stroma accounts for maintenance of corneal curvature. Br J Ophthalmol. 2001;85(4):437–43. https://doi.org/10.1136/bjo.85.4.437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Quantock AJ, Young RD, Akama TO. Structural and biochemical aspects of keratan sulphate in the cornea. Cell Mol Life Sci. 2010;67(6):891–906. https://doi.org/10.1007/s00018-009-0228-7.

    Article  CAS  PubMed  Google Scholar 

  20. Borcherding MS, Blacik LJ, Sittig RA, Bizzell JW, Breen M, Weinstein HG. Proteoglycans and collagen fibre organization in human corneoscleral tissue. Exp Eye Res. 1975;21(1):59–70.

    Article  CAS  Google Scholar 

  21. Chen S, Mienaltowski MJ, Birk DE. Regulation of corneal stroma extracellular matrix assembly. Exp Eye Res. 2015;133:69–80. https://doi.org/10.1016/J.EXER.2014.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Akhtar S, Bron AJ, Salvi SM, Hawksworth NR, Tuft SJ, Meek KM. Ultrastructural analysis of collagen fibrils and proteoglycans in keratoconus. Acta Ophthalmol. 2008;86(7):764–72. https://doi.org/10.1111/j.1755-3768.2007.01142.x.

    Article  PubMed  Google Scholar 

  23. Friedenwald JS. Contribution to the theory and practice of tonometry. Am J Ophthalmol. 1937;20(10):985–1024. https://doi.org/10.1016/S0002-9394(37)90425-2.

    Article  Google Scholar 

  24. Wang H, Prendiville PL, McDonnell PJ, Chang WV. An ultrasonic technique for the measurement of the elastic moduli of human cornea. J Biomech. 1996;29(12):1633–6. https://doi.org/10.1016/S0021-9290(96)80017-0.

    Article  CAS  PubMed  Google Scholar 

  25. Freed AD, Doehring TC. Elastic model for crimped collagen fibrils. J Biomech Eng. 2005 Feb 1;127(4):587. https://doi.org/10.1115/1.1934145.

    Article  PubMed  Google Scholar 

  26. Wang L-K, Huang Y-P, Tian L, Kee C, Zheng Y-P. Measurement of corneal tangent modulus using ultrasound indentation. Ultrasonics. 2016;71:20–8. https://doi.org/10.1016/j.ultras.2016.05.011.

    Article  PubMed  Google Scholar 

  27. Randleman JB, Dawson DG, Grossniklaus HE, McCarey BE, Edelhauser HF. Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery. J Refract Surg. 2008;24(1):S85–9.

    PubMed  Google Scholar 

  28. Elsheikh A, Wang D, Brown M, Rama P, Campanelli M, Pye D. Assessment of corneal biomechanical properties and their variation with age. Curr Eye Res. 2007;32(1):11–9. https://doi.org/10.1080/02713680601077145.

    Article  PubMed  Google Scholar 

  29. Kling S, Hafezi F. Corneal biomechanics – a review. Ophthalmic Physiol Opt. 2017;37(3):240–52. https://doi.org/10.1111/opo.12345.

    Article  PubMed  Google Scholar 

  30. Dupps WJ. Biomechanical modeling of corneal ectasia. J Refract Surg. 2005;21(2):186–90.

    Article  Google Scholar 

  31. Smolek MK. Interlamellar cohesive strength in the vertical meridian of human eye bank corneas. Investig Ophthalmol Vis Sci. 1993;34(10):2962–9.

    CAS  Google Scholar 

  32. Woo SLY, Kobayashi AS, Schlegel WA, Lawrence C. Nonlinear material properties of intact cornea and sclera. Exp Eye Res. 1972;14(1):29–39. https://doi.org/10.1016/0014-4835(72)90139-X.

    Article  CAS  PubMed  Google Scholar 

  33. Dupps WJ, Roberts C. Effect of acute biomechanical changes on corneal curvature after photokeratectomy. J Refract Surg. 2001;17(6):658–69.

    Article  Google Scholar 

  34. Boote C, Elsheikh A, Kassem W, Kamma-Lorger CS, Hocking PM, White N, et al. The influence of lamellar orientation on corneal material behavior: biomechanical and structural changes in an avian corneal disorder. Investig Ophthalmol Vis Sci. 2011;52(3):1243–51. https://doi.org/10.1167/iovs.10-5962.

    Article  Google Scholar 

  35. Wollensak G, Spoerl E, Seiler T. Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. J Cataract Refract Surg. 2003;29(9):1780–5. https://doi.org/10.1016/S0886-3350(03)00407-3.

    Article  PubMed  Google Scholar 

  36. Andreassen TT, Simonsen AH, Oxlund H. Biomechanical properties of keratoconus and normal corneas. Exp Eye Res. 1980;31(4):435–41.

    Article  CAS  Google Scholar 

  37. Wang S, Larin KV. Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics. Opt Lett. 2014;39(1):41–4.

    Article  CAS  Google Scholar 

  38. Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51(4):396–409.

    Article  Google Scholar 

  39. Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005;31(1):156–62. https://doi.org/10.1016/j.jcrs.2004.10.044.

    Article  PubMed  Google Scholar 

  40. De Stefano VS, Seven I, Randleman JB, Dupps WJ. Custom air-puff derived biomechanical variables in a refractive surgery screening setting: study from 2 centers. J Cataract Refract Surg. 2018;44(5):589–95. https://doi.org/10.1016/j.jcrs.2018.03.022.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nemeth G, Hassan Z, Csutak A, Szalai E, Berta A, Modis L. Repeatability of ocular biomechanical data measurements with a Scheimpflug-based noncontact device on normal corneas. J Refract Surg. 2013;29(8):558–63. https://doi.org/10.3928/1081597X-20130719-06.

    Article  PubMed  Google Scholar 

  42. Vinciguerra R, Ambrósio R, Elsheikh A, Roberts CJ, Lopes B, Morenghi E, et al. Detection of keratoconus with a new biomechanical index. J Refract Surg. 2016;32(12):803–10. https://doi.org/10.3928/1081597X-20160629-01.

    Article  PubMed  Google Scholar 

  43. Ambrósio R, Lopes BT, Faria-Correia F, Salomão MQ, Bühren J, Roberts CJ, et al. Integration of Scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection. J Refract Surg. 2017;33(7):434–43. https://doi.org/10.3928/1081597X-20170426-02.

    Article  PubMed  Google Scholar 

  44. Kling S, Marcos S. Contributing factors to corneal deformation in air puff measurements. Investig Ophthalmol Vis Sci. 2013;54(7):5078–85. https://doi.org/10.1167/iovs.13-12509.

    Article  Google Scholar 

  45. Lanza M, Iaccarino S, Bifani M. In vivo human corneal deformation analysis with a Scheimpflug camera, a critical review. J Biophotonics. 2016;9(5):464–77. https://doi.org/10.1002/jbio.201500233.

    Article  PubMed  Google Scholar 

  46. Bak-Nielsen S, Pedersen IB, Ivarsen A, Hjortdal J. Repeatability, reproducibility, and age dependency of dynamic Scheimpflug-based pneumotonometer and its correlation with a dynamic bidirectional pneumotonometry device. Cornea. 2015;34(1):71–7. https://doi.org/10.1097/ICO.0000000000000293.

    Article  PubMed  Google Scholar 

  47. Fontes BM, Ambrósio R, Jardim D, Velarde GC, Nosé W. Corneal biomechanical metrics and anterior segment parameters in mild keratoconus. Ophthalmology. 2010;117(4):673–9. https://doi.org/10.1016/j.ophtha.2009.09.023.

    Article  PubMed  Google Scholar 

  48. Koski KJ, Yarger JL. Brillouin imaging. Appl Phys Lett. 2005;87:061903. https://doi.org/10.1063/1.1999857.

    Article  CAS  Google Scholar 

  49. Scarcelli G, Yun SH. Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nat Photonics. 2007;2:39–43. https://doi.org/10.1038/nphoton.2007.250.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Scarcelli G, Yun SH. In vivo Brillouin optical microscopy of the human eye. Opt Express. 2012;20(8):9197–202. https://doi.org/10.1364/OE.20.009197.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Scarcelli G, Besner S, Pineda R, Yun SH. Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy. Investig Ophthalmol Vis Sci. 2014;55(7):4490–5. https://doi.org/10.1167/iovs.14-14450.

    Article  Google Scholar 

  52. Scarcelli G, Pineda R, Yun SH. Brillouin optical microscopy for corneal biomechanics. Investig Ophthalmol Vis Sci. 2012;53(1):185–90. https://doi.org/10.1167/iovs.11-8281.

    Article  Google Scholar 

  53. Randleman JB, Su JP, Scarcelli G. Biomechanical changes after LASIK flap creation combined with rapid cross-linking measured with Brillouin microscopy. J Refract Surg. 2017;33(6):408–14. https://doi.org/10.3928/1081597X-20170421-01.

    Article  PubMed  Google Scholar 

  54. Seiler TG, Shao P, Eltony A, Seiler T, Yun S-H. Brillouin spectroscopy of normal and keratoconus corneas. Am J Ophthalmol. 2019;0(0). https://doi.org/10.1016/j.ajo.2019.02.010.

  55. Wu PJ, Kabakova IV, Ruberti JW, Sherwood JM, Dunlop IE, Paterson C, et al. Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials. Vol. 15, Nature methods: Nature Publishing Group; 2018. p. 561–2. https://doi.org/10.1038/s41592-018-0076-1.

    Book  Google Scholar 

  56. Shao P, Eltony AM, Seiler TG, Tavakol B, Pineda R, Koller T, et al. Spatially-resolved Brillouin spectroscopy reveals biomechanical abnormalities in mild to advanced keratoconus in vivo. Sci Rep. 2019;9(1):7467. https://doi.org/10.1038/s41598-019-43811-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13(2):111–34. https://doi.org/10.1177/016173469101300201.

    Article  CAS  PubMed  Google Scholar 

  58. Schmitt J. OCT elastography: imaging microscopic deformation and strain of tissue. Opt Express. 1998;3(6):199–211. https://doi.org/10.1364/OE.3.000199.

    Article  CAS  PubMed  Google Scholar 

  59. Ford MR, Dupps WJ, Rollins AM, Roy AS, Hu Z. Method for optical coherence elastography of the cornea. J Biomed Opt. 2011;16(1):0160051–7. https://doi.org/10.1117/1.3526701.

    Article  Google Scholar 

  60. Ford MR, Roy AS, Rollins AM, Dupps WJ. Serial biomechanical comparison of edematous, normal, and collagen crosslinked human donor corneas using optical coherence elastography. J Cataract Refract Surg. 2014;40(6):1041–7. https://doi.org/10.1016/j.jcrs.2014.03.017.

    Article  PubMed  PubMed Central  Google Scholar 

  61. De Stefano VS, Ford MR, Seven I, Dupps WJ. Live human assessment of depth-dependent corneal displacements with swept-source optical coherence elastography. PLoS One. 2018;13(12):e0209480. https://doi.org/10.1371/journal.pone.0209480.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Winkler M, Shoa G, Xie Y, Petsche SJ, Pinsky PM, Juhasz T, et al. Three-dimensional distribution of transverse collagen fibers in the anterior human corneal stroma. Investig Ophthalmol Vis Sci. 2013;54(12):7293–301. https://doi.org/10.1167/iovs.13-13150.

    Article  CAS  Google Scholar 

  63. Blackburn B, Gu S, Ford M, De Stefano V, Jenkins M, Dupps W, et al. Noninvasive assessment of corneal crosslinking with phase-decorrelation OCT. Investig Ophthalmol Vis Sci. 2019;60(1):41–51. https://doi.org/10.1167/iovs.18-25535.

    Article  CAS  Google Scholar 

  64. Klyce SD, Dohlman CH, Tolpin DW. In vivo determination of corneal swelling pressure. Exp Eye Res. 1971;11(2):220–9.

    Article  CAS  Google Scholar 

  65. Piñero DP, Alcón N. Corneal biomechanics: a review. Clin Exp Optom. 2015;98(2):107–16. https://doi.org/10.1111/cxo.12230.

    Article  PubMed  Google Scholar 

  66. Sinha Roy A, Dupps WJ. Effects of altered corneal stiffness on native and postoperative LASIK corneal biomechanical behavior: a whole-eye finite element analysis. J Refract Surg. 2009;25(10):875–87. https://doi.org/10.3928/1081597X-20090917-09.

    Article  PubMed  Google Scholar 

  67. Stark WJ, Chamon W, Kamp MT, Enger CL, Rencs EV, Gottsh JD. Clinical follow-up of 193-nm ArF excimer laser photokeratectomy. Ophthalmology. 1992;99(5):805–12. https://doi.org/10.1016/S0161-6420(92)31896-2.

    Article  CAS  PubMed  Google Scholar 

  68. Fagerholm P, Fitzsimmons TD, Orndahl M, Ohman L, Tengroth B. Phototherapeutic keratectomy: long-term results in 166 eyes. Refract Corneal Surg. 1993;9(2 Suppl):S76–81.

    CAS  PubMed  Google Scholar 

  69. Güell JL, Velasco F, Roberts C, Sisquella MT, Mahmoud A. Corneal flap thickness and topography changes induced by flap creation during laser in situ keratomileusis. J Cataract Refract Surg. 2005;31(1):115–9. https://doi.org/10.1016/j.jcrs.2004.09.045.

    Article  PubMed  Google Scholar 

  70. Waheed S, Chalita MR, Xu M, Krueger RR. Flap-induced and laser-induced ocular aberrations in a two-step LASIK procedure. J Refract Surg. 2005;21(4):346–52.

    Article  Google Scholar 

  71. Pereira T, Forseto AS, Alberti GN, Nosé W. Flap-induced refraction change in LASIK after penetrating keratoplasty. J Refract Surg. 2007;23(3):279–83.

    Article  Google Scholar 

  72. Xia L-K, Yu J, Chai G-R, Wang D, Li Y. Comparison of the femtosecond laser and mechanical microkeratome for flap cutting in LASIK. Int J Ophthalmol. 2015;8(4):784–90. https://doi.org/10.3980/j.issn.2222-3959.2015.04.25.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Shetty R, Malhotra C, D’Souza S, Wadia K. WaveLight FS200 vs Hansatome LASIK: intraoperative determination of flap characteristics and predictability by hand-held bioptigen spectral domain ophthalmic imaging system. J Refract Surg. 2012;28(11 Suppl):S815–20.

    PubMed  Google Scholar 

  74. Pinsky PM, van der Heide D, Chernyak D. Computational modeling of mechanical anisotropy in the cornea and sclera. J Cataract Refract Surg. 2005;31(1):136–45. https://doi.org/10.1016/j.jcrs.2004.10.048.

    Article  PubMed  Google Scholar 

  75. Pinsky PM, Datye DV. Numerical modeling of radial, astigmatic, and hexagonal keratotomy. Refract Corneal Surg. 1992;8(2):164–72. https://doi.org/10.3928/1081-597X-19920301-12.

    Article  CAS  PubMed  Google Scholar 

  76. Simonini I, Pandolfi A. Customized finite element modelling of the human cornea. PLoS One. 2015;10(6):e0130426. https://doi.org/10.1371/journal.pone.0130426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dupps WJ, Seven I. A large-scale computational analysis of corneal structural response and ectasia risk in myopic laser refractive surgery. Trans Am Ophthalmol Soc. 2016;114(T1):1–16.

    Google Scholar 

  78. Seven I, Vahdati A, De Stefano VS, Krueger RR, Dupps WJ. Comparison of patient-specific computational modeling predictions and clinical outcomes of LASIK for myopia. Investig Ophthalmol Vis Sci. 2016;57(14):6287–97. https://doi.org/10.1167/iovs.16-19948.

    Article  Google Scholar 

  79. De Stefano VS, Greene BA, Gouvea L, Rocha KM, Waring GO. Initial clinical experience in preoperative ectasia risk analysis and prediction outcomes with a finite element modeling-based software. In: ASCRS annual meeting. San Diego; 2019.

    Google Scholar 

  80. Randleman JB, Russell B, Ward MA, Thompson KP, Stulting RD. Risk factors and prognosis for corneal ectasia after LASIK. Ophthalmology. 2003;110(2):267–75. https://doi.org/10.1016/S0161-6420(02)01727-X.

    Article  PubMed  Google Scholar 

  81. Santhiago MR, Smadja D, Gomes BF, Mello GR, Monteiro MLR, Wilson SE, et al. Association between the percent tissue altered and post-laser in situ keratomileusis ectasia in eyes with normal preoperative topography. Am J Ophthalmol. 2014;158(1):87–95.e1. https://doi.org/10.1016/j.ajo.2014.04.002.

    Article  PubMed  Google Scholar 

  82. Santhiago MR, Wilson SE, Hallahan KM, Smadja D, Lin M, Ambrosio R, et al. Changes in custom biomechanical variables after femtosecond laser in situ keratomileusis and photorefractive keratectomy for myopia. J Cataract Refract Surg. 2014;40(6):918–28. https://doi.org/10.1016/j.jcrs.2013.11.030.

    Article  PubMed  PubMed Central  Google Scholar 

  83. de Medeiros FW, Sinha-Roy A, Alves MR, Wilson SE, Dupps WJ. Differences in the early biomechanical effects of hyperopic and myopic laser in situ keratomileusis. J Cataract Refract Surg. 2010;36(6):947–53. https://doi.org/10.1016/j.jcrs.2009.12.032.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Reinstein DZ, Archer TJ, Randleman JB. Mathematical model to compare the relative tensile strength of the cornea after PRK, LASIK, and small incision lenticule extraction. J Refract Surg. 2013;29(7):454–60. https://doi.org/10.3928/1081597X-20130617-03.

    Article  PubMed  Google Scholar 

  85. Sinha Roy A, Dupps WJ, Roberts CJ. Comparison of biomechanical effects of small-incision lenticule extraction and laser in situ keratomileusis: finite-element analysis. J Cataract Refract Surg. 2014;40(6):971–80. https://doi.org/10.1016/j.jcrs.2013.08.065.

    Article  PubMed  Google Scholar 

  86. Seven I, Vahdati A, Pedersen IB, Vestergaard A, Hjortdal J, Roberts CJ, et al. Contralateral eye comparison of SMILE and flap-based corneal refractive surgery: computational analysis of biomechanical impact. J Refract Surg. 2017;33(7):444–53. https://doi.org/10.3928/1081597X-20170504-01.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Spiru B, Kling S, Hafezi F, Sekundo W. Biomechanical properties of human cornea tested by two-dimensional extensiometry ex vivo in fellow eyes: femtosecond laser-assisted LASIK versus SMILE. J Refract Surg. 2018;34(6):419–23. https://doi.org/10.3928/1081597X-20180402-05.

    Article  PubMed  Google Scholar 

  88. Guo H, Hosseini-Moghaddam SM, Hodge W. Corneal biomechanical properties after SMILE versus FLEX, LASIK, LASEK, or PRK: a systematic review and meta-analysis. BMC Ophthalmol. 2019;19(1). https://doi.org/10.1186/s12886-019-1165-3.

  89. Khamar P, Shetty R, Vaishnav R, Francis M, Nuijts RMMA, Roy AS. Biomechanics of LASIK flap and smile cap: a prospective, clinical study. J Refract Surg. 2019;35(5):324–32. https://doi.org/10.3928/1081597X-20190319-01.

    Article  PubMed  Google Scholar 

  90. Sachdev G, Sachdev MS, Sachdev R, Gupta H. Unilateral corneal ectasia following small-incision lenticule extraction. J Cataract Refract Surg. 2015;41(9):2014–8. https://doi.org/10.1016/j.jcrs.2015.08.006.

    Article  PubMed  Google Scholar 

  91. El-Naggar MT. Bilateral ectasia after femtosecond laser-assisted small-incision lenticule extraction. J Cataract Refract Surg. 2015;41(4):884–8. https://doi.org/10.1016/j.jcrs.2015.02.008.

    Article  PubMed  Google Scholar 

  92. Randleman JB. Ectasia after corneal refractive surgery: nothing to SMILE about. J Refract Surg. 2016;32(7):434–5. https://doi.org/10.3928/1081597X-20160613-01.

    Article  PubMed  Google Scholar 

  93. Yao P, Zhao J, Li M, Shen Y, Dong Z, Zhou X. Microdistortions in Bowman’s layer following femtosecond laser small incision lenticule extraction observed by Fourier-Domain OCT. J Refract Surg. 2013;29(10):668–74. https://doi.org/10.3928/1081597X-20130806-01.

    Article  PubMed  Google Scholar 

  94. Luo J, Yao P, Li M, Xu G, Zhao J, Tian M, et al. Quantitative analysis of microdistortions in Bowman’s layer using optical coherence tomography after SMILE among different myopic corrections. J Refract Surg. 2015;31(2):104–9. https://doi.org/10.3928/1081597X-20150122-05.

    Article  PubMed  Google Scholar 

  95. Shroff R, Francis M, Pahuja N, Veeboy L, Shetty R, Sinha RA. Quantitative evaluation of microdistortions in Bowman’s layer and corneal deformation after small incision Lenticule extraction. Transl Vis Sci Technol. 2016;5(5):12. https://doi.org/10.1167/tvst.5.5.12.

    Article  PubMed  PubMed Central  Google Scholar 

  96. De Stefano VS, Ford MR, Seven I, Hughes B, Dupps WJ. Differences in corneal biomechanical behavior between normal and keratoconic corneas using in-vivo optical coherence elastography. In: ARVO annual meeting. Honolulu; 2018.

    Google Scholar 

  97. Wollensak G, Iomdina E, Dittert D-D, Herbst H. Wound healing in the rabbit cornea after corneal collagen cross-linking with riboflavin and UVA. Cornea. 2007;26(5):600–5. https://doi.org/10.1097/ICO.0b013e318041f073.

    Article  PubMed  Google Scholar 

  98. Netto MV, Mohan RR, Ambrósio R, Hutcheon AEK, Zieske JD, Wilson SE. Wound healing in the cornea: a review of refractive surgery complications and new prospects for therapy. Cornea. 2005;24(5):509–22.

    Article  Google Scholar 

  99. Medeiros CS, Marino GK, Santhiago MR, Wilson SE. The corneal basement membranes and stromal fibrosis. Investig Ophthalmol Vis Sci. 2018;59(10):4044. https://doi.org/10.1167/iovs.18-24428.

    Article  CAS  Google Scholar 

  100. Garcia-Gonzalez M, Cañadas P, Gros-Otero J, Rodriguez-Perez I, Cañones-Zafra R, Kozobolis V, et al. Long-term corneal sub-basal nerve plexus regeneration after lasik. J Cataract Refract Surg. 2019;0(0). https://doi.org/10.1016/J.JCRS.2019.02.019

  101. Medeiros CS, Marino GK, Lassance L, Shanmugapriya T, Santhiago MR, Wilson SE. The impact of photorefractive keratectomy and mitomycin C on corneal nerves and their regeneration. J Refract Surg. 2018;34(12):790–8. https://doi.org/10.3928/1081597X-20181112-01.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wilson SE, Liu JJ, Mohan RR. Stromal-epithelial interactions in the cornea. Prog Retin Eye Res. 1999;18(3):293–309.

    Article  CAS  Google Scholar 

  103. Tuominen IS, Tervo TM, Teppo AM, Valle TU, Grönhagen-Riska C, Vesaluoma MH. Human tear fluid PDGF-BB, TNF-alpha and TGF-beta1 vs corneal haze and regeneration of corneal epithelium and subbasal nerve plexus after PRK. Exp Eye Res. 2001;72(6):631–41. https://doi.org/10.1006/exer.2001.0999.

    Article  CAS  PubMed  Google Scholar 

  104. Wilson SE, Li Q, Weng J, Barry-Lane PA, Jester JV, Liang Q, et al. The Fas-Fas ligand system and other modulators of apoptosis in the cornea. Investig Ophthalmol Vis Sci. 1996;37(8):1582–92.

    CAS  Google Scholar 

  105. Mohan RR, Liang Q, Kim WJ, Helena MC, Baerveldt F, Wilson SE. Apoptosis in the cornea: further characterization of Fas/Fas ligand system. Exp Eye Res. 1997;65(4):575–89. https://doi.org/10.1006/exer.1997.0371.

    Article  CAS  PubMed  Google Scholar 

  106. Tomás-Juan J, Murueta-Goyena Larrañaga A, Hanneken L. Corneal regeneration after photorefractive keratectomy: a review. J Optom. 2015;8(3):149–69. https://doi.org/10.1016/J.OPTOM.2014.09.001.

    Article  PubMed  Google Scholar 

  107. Lassance L, Marino GK, Medeiros CS, Thangavadivel S, Wilson SE. Fibrocyte migration, differentiation and apoptosis during the corneal wound healing response to injury. Exp Eye Res. 2018;170:177–87. https://doi.org/10.1016/j.exer.2018.02.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Corbett MC, O’Brart DP, Patmore AL, Marshall J. Effect of collagenase inhibitors on corneal haze after PRK. Exp Eye Res. 2001;72(3):253–9. https://doi.org/10.1006/exer.2000.0959.

    Article  CAS  PubMed  Google Scholar 

  109. Barbosa FL, Chaurasia SS, Kaur H, de Medeiros FW, Agrawal V, Wilson SE. Stromal interleukin-1 expression in the cornea after haze-associated injury. Exp Eye Res. 2010;91(3):456–61. https://doi.org/10.1016/J.EXER.2010.06.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Alio JL, Javaloy J. Corneal inflammation following corneal photoablative refractive surgery with excimer laser. Surv Ophthalmol. 2013;58(1):11–25. https://doi.org/10.1016/J.SURVOPHTHAL.2012.04.005.

    Article  PubMed  Google Scholar 

  111. Majmudar PA, Schallhorn SC, Cason JB, Donaldson KE, Kymionis GD, Shtein RM, et al. Mitomycin-C in corneal surface excimer laser ablation techniques: a report by the American Academy of Ophthalmology. Ophthalmology. 2015;122(6):1085–95. https://doi.org/10.1016/j.ophtha.2015.01.019.

    Article  PubMed  Google Scholar 

  112. Wilson SE. Corneal myofibroblast biology and pathobiology: generation, persistence, and transparency. Exp Eye Res. 2012;99:78–88. https://doi.org/10.1016/J.EXER.2012.03.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wilson SE. Coordinated modulation of corneal scarring by the epithelial basement membrane and Descemet’s basement membrane. J Refract Surg. 2019;35(8):506–16. https://doi.org/10.3928/1081597x-20190625-02.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Netto MV, Mohan RR, Medeiros FW, Dupps WJ, Sinha S, Krueger RR, et al. Femtosecond laser and microkeratome corneal flaps: comparison of stromal wound healing and inflammation. J Refract Surg. 2007;23(7):667–76.

    Article  Google Scholar 

  115. Marino GK, Santhiago MR, Torricelli AAM, Santhanam A, Wilson SE. Corneal molecular and cellular biology for the refractive surgeon: the critical role of the epithelial basement membrane. J Refract Surg. 2016;32(2):118–25. https://doi.org/10.3928/1081597X-20160105-02.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Santhiago MR, Netto MV, Wilson SE. Mitomycin C: biological effects and use in refractive surgery. Cornea. 2012;31(3):311–21. https://doi.org/10.1097/ICO.0b013e31821e429d.

    Article  PubMed  Google Scholar 

  117. Netto MV, Mohan RR, Sinha S, Sharma A, Dupps W, Wilson SE. Stromal haze, myofibroblasts, and surface irregularity after PRK. Exp Eye Res. 2006;82(5):788–97. https://doi.org/10.1016/j.exer.2005.09.021.

    Article  CAS  PubMed  Google Scholar 

  118. Torricelli AAM, Santhanam A, Wu J, Singh V, Wilson SE. The corneal fibrosis response to epithelial–stromal injury. Exp Eye Res. 2016;142:110–8. https://doi.org/10.1016/j.exer.2014.09.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. AAM T, Singh V, Santhiago MR, Wilson SE. The corneal epithelial basement membrane: structure, function, and disease. Vol. 54, Investigative ophthalmology and visual science; 2013. p. 6390–400. https://doi.org/10.1167/iovs.13-12547.

    Book  Google Scholar 

  120. Helena MC, Filatov VV, Johnston WT, Vidaurri-Leal J, Wilson SE, Talamo JH. Effects of 50% ethanol and mechanical epithelial debridement on corneal structure before and after excimer photorefractive keratectomy. Cornea. 1997;16(5):571–9.

    Article  CAS  Google Scholar 

  121. Shalchi Z, O’Brart DPS, McDonald RJ, Patel P, Archer TJ, Marshall J. Eighteen-year follow-up of excimer laser photorefractive keratectomy. J Cataract Refract Surg. 2015;41(1):23–32. https://doi.org/10.1016/j.jcrs.2014.05.034.

    Article  PubMed  Google Scholar 

  122. Mimouni M, Vainer I, Shapira Y, Levartovsky S, Sela T, Munzer G, et al. Factors predicting the need for retreatment after laser refractive surgery. Cornea. 2016;35(5):607–12. https://doi.org/10.1097/ICO.0000000000000795.

    Article  PubMed  Google Scholar 

  123. Mohan RR, Hutcheon AEK, Choi R, Hong J, Lee J, Mohan RR, et al. Apoptosis, necrosis, proliferation, and myofibroblast generation in the stroma following LASIK and PRK. Exp Eye Res. 2003;76(1):71–87.

    Article  CAS  Google Scholar 

  124. Ting DSJ, Srinivasan S, Danjoux J-P. Epithelial ingrowth following laser in situ keratomileusis (LASIK): prevalence, risk factors, management and visual outcomes. BMJ Open Ophthalmol. 2018;3(1):e000133. https://doi.org/10.1136/bmjophth-2017-000133.

    Article  PubMed  PubMed Central  Google Scholar 

  125. de Paula FH, Khairallah CG, Niziol LM, Musch DC, Shtein RM. Diffuse lamellar keratitis after laser in situ keratomileusis with femtosecond laser flap creation. J Cataract Refract Surg. 2012;38(6):1014–9. https://doi.org/10.1016/j.jcrs.2011.12.030.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Segev F, Mimouni M, Sela T, Munzer G, Kaiserman I. Risk factors for sporadic diffuse lamellar keratitis after microkeratome laser-assisted in situ keratomileusis. Cornea. 2018;37(9):1124–9. https://doi.org/10.1097/ICO.0000000000001674.

    Article  PubMed  Google Scholar 

  127. Vogel A, Noack J, Hüttman G, Paltauf G. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl Phys B Lasers Opt. 2005;81(8):1015–47. https://doi.org/10.1007/s00340-005-2036-6.

    Article  CAS  Google Scholar 

  128. Santhiago MR, Wilson SE. Cellular effects after laser in situ keratomileusis flap formation with femtosecond lasers: a review. Cornea. 2012;31(2):198–205. https://doi.org/10.1097/ICO.0b013e3182068c42.

    Article  PubMed  Google Scholar 

  129. Marino GK, Santhiago MR, Wilson SE. Femtosecond lasers and corneal surgical procedures. Asia-Pacific J Ophthalmol. 2017;6(5):456–64. https://doi.org/10.22608/APO.2017163.

    Article  Google Scholar 

  130. Kim JY, Kim MJ, Kim T, Choi H, Pak JH, Tchah H. A femtosecond laser creates a stronger flap than a mechanical microkeratome. Investig Ophthalmol Vis Sci. 2006;47(2):599. https://doi.org/10.1167/iovs.05-0458.

    Article  Google Scholar 

  131. Sekundo W, Kunert K, Russmann C, Gille A, Bissmann W, Stobrawa G, et al. First efficacy and safety study of femtosecond lenticule extraction for the correction of myopia. J Cataract Refract Surg. 2008;34(9):1513–20. https://doi.org/10.1016/j.jcrs.2008.05.033.

    Article  PubMed  Google Scholar 

  132. Sekundo W, Kunert KS, Blum M. Small incision corneal refractive surgery using the small incision lenticule extraction (SMILE) procedure for the correction of myopia and myopic astigmatism: results of a 6 month prospective study. Br J Ophthalmol. 2011;95(3):335–9. https://doi.org/10.1136/bjo.2009.174284.

    Article  PubMed  Google Scholar 

  133. Liu Y-C, Teo EPW, Lwin NC, Yam GHF, Mehta JS. Early corneal wound healing and inflammatory responses after SMILE: comparison of the effects of different refractive corrections and surgical experiences. J Refract Surg. 2016;32(5):346–53. https://doi.org/10.3928/1081597X-20160217-05.

    Article  PubMed  Google Scholar 

  134. Luft N, Schumann RG, Dirisamer M, Kook D, Siedlecki J, Wertheimer C, et al. Wound healing, inflammation, and corneal ultrastructure after SMILE and femtosecond laser–assisted LASIK: a human ex vivo study. J Refract Surg. 2018;34(6):393–9. https://doi.org/10.3928/1081597X-20180425-02.

    Article  PubMed  Google Scholar 

  135. Torricelli AAM, Singh V, Agrawal V, Santhiago MR, Wilson SE. Transmission electron microscopy analysis of epithelial basement membrane repair in rabbit corneas with haze. Investig Ophthalmol Vis Sci. 2013;54(6):4026. https://doi.org/10.1167/iovs.13-12106.

    Article  Google Scholar 

  136. Torricelli AAM, Marino GK, Santhanam A, Wu J, Singh A, Wilson SE. Epithelial basement membrane proteins perlecan and nidogen-2 are up-regulated in stromal cells after epithelial injury in human corneas. Exp Eye Res. 2015;134:33–8. https://doi.org/10.1016/J.EXER.2015.03.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Talamo JH, Gollamudi S, Green WR, De La Cruz Z, Filatov V, Stark WJ. Modulation of corneal wound healing after excimer laser keratomileusis using topical mitomycin C and steroids. Arch Ophthalmol. 1991;109(8):1141–6.

    Article  CAS  Google Scholar 

  138. Netto MV, Mohan RR, Sinha S, Sharma A, Gupta PC, Wilson SE. Effect of prophylactic and therapeutic mitomycin C on corneal apoptosis, cellular proliferation, haze, and long-term keratocyte density in rabbits. J Refract Surg. 2006;22(6):562–74.

    Article  Google Scholar 

  139. Kim T, Pak JH, Lee SY, Tchah H. Mitomycin C-induced reduction of keratocytes and fibroblasts after photorefractive keratectomy. Investig Ophthalmol Vis Sci. 2004;45(9):2978. https://doi.org/10.1167/iovs.04-0070.

    Article  Google Scholar 

  140. Wilson SE, Marino GK, Torricelli AAM, Medeiros CS. Injury and defective regeneration of the epithelial basement membrane in corneal fibrosis: a paradigm for fibrosis in other organs? Matrix Biol. 2017;64:17–26. https://doi.org/10.1016/J.MATBIO.2017.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Marino GK, Santhiago MR, Santhanam A, Torricelli AAM, Wilson SE. Regeneration of defective epithelial basement membrane and restoration of corneal transparency after photorefractive keratectomy. J Refract Surg. 2017;33(5):337–46. https://doi.org/10.3928/1081597X-20170126-02.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Schmack I, Dawson DG, McCarey BE, Waring GO, Grossniklaus HE, Edelhauser HF. Cohesive tensile strength of human LASIK wounds with histologic, ultrastructural, and clinical correlations. J Refract Surg. 2005;21(5):433–45.

    Article  Google Scholar 

  143. Wilson SE. Analysis of the keratocyte apoptosis, keratocyte proliferation, and myofibroblast transformation responses after photorefractive keratectomy and laser in situ keratomileusis. Trans Am Ophthalmol Soc. 2002;100:411–33.

    PubMed  PubMed Central  Google Scholar 

  144. Mar PK, Roy P, Yin HL, Cavanagh HD, Jester JV. Stress fiber formation is required for matrix reorganization in a corneal myofibroblast cell line. Exp Eye Res. 2001;72(4):455–66. https://doi.org/10.1006/exer.2000.0967.

    Article  CAS  PubMed  Google Scholar 

  145. Petroll WM, Cavanagh HD, Jester JV. Dynamic three-dimensional visualization of collagen matrix remodeling and cytoskeletal organization in living corneal fibroblasts. Scanning. 2004;26(1):1–10.

    Article  Google Scholar 

  146. Wang WY, Pearson AT, Kutys ML, Choi CK, Wozniak MA, Baker BM, et al. Extracellular matrix alignment dictates the organization of focal adhesions and directs uniaxial cell migration. APL Bioeng. 2018;2(4):046107. https://doi.org/10.1063/1.5052239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Dupps Jr. .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

De Stefano, V.S., Dupps, W.J., Wilson, S.E. (2021). Biomechanics and Wound Healing in the Cornea. In: Albert, D., Miller, J., Azar, D., Young, L.H. (eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-90495-5_224-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90495-5_224-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90495-5

  • Online ISBN: 978-3-319-90495-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics