Skip to main content

Advertisement

Log in

A two-muscle, continuum-mechanical forward simulation of the upper limb

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

By following the common definition of forward-dynamics simulations, i.e. predicting movement based on (neural) muscle activity, this work describes, for the first time, a forward-dynamics simulation framework of a musculoskeletal system, in which all components are represented as continuous, three-dimensional, volumetric objects. Within this framework, the mechanical behaviour of the entire muscle–tendon complex is modelled as a nonlinear hyperelastic material undergoing finite deformations. The feasibility and the full potential of the proposed forward-dynamics simulation framework is demonstrated on a two-muscle, three-dimensional, continuum-mechanical model of the upper limb. The musculoskeletal model consists of three bones, i.e. humerus, ulna, and radius, an one-degree-of-freedom elbow joint, and an antagonistic muscle pair, i.e. the biceps and triceps brachii, and takes into consideration the contact between the skeletal muscles and the humerus. Numerical studies have shown that the proposed upper limb model is capable of predicting realistic moment arms and muscle forces for the entire range of activation and motion. Within the limitations of the model, the presented simulations provide, for the first time, insights into existing contact forces and their influence on the muscle fibre stretch. Based on the presented simulations, the overall change in fibre stretch is typically less than 3%, despite the fact that the contact forces reach up to 71% of the exerted muscle force. Movement-predicting simulations are achieved by minimising a nonlinear moment equilibrium equation. Based on the forward-dynamics simulation approach, an iterative solution procedures for position-driven (inverse dynamics) and force-driven scenarios have been proposed accordingly. Applying these methodologies to time-dependent scenarios demonstrates that the proposed methods can be linked to state-of-the-art control algorithms predicting time-dependent muscle activation levels based on principles of forward dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. An interactive computer program for Continuum Mechanics, Image analysis, Signal processing and System Identification (http://www.cmiss.org).

References

  • Alexander RM, Vernon A (1975) The dimensions of knee and ankle muscles and the forces they exert. J Human Mov Stud 1(1):115–123

    Google Scholar 

  • Amis AA, Dowson D, Wright V (1980) Analysis of elbow forces due to high-speed forearm movements. J Biomech 13(10):825–831

    Article  Google Scholar 

  • An KN, Takahashi K, Harrigan TP, Chao EY (1984) Determination of muscle orientations and moment arms. J Biomech Eng 106(3):280–282

    Article  Google Scholar 

  • An KN, Kaufman KR, Chao EYS (1989) Physiological considerations of muscle force through the elbow joint. J Biomech 22(11):1249–1256

    Article  Google Scholar 

  • Anderson FC (1999) A dynamic optimization solution for a complete cycle of normal gait. PhD thesis, University of Texas at Austin

  • Anderson FC, Pandy MG (2001) Static and dynamic optimization solutions for gait are practically equivalent. J Biomech 34(2):153–161

    Article  Google Scholar 

  • Biodex Medical Systems I (2006) Biodex multi-joint system—PRO, Setup and operation manual. www.biodex.com

  • Blemker SS, Delp SL (2005) Three-dimensional representation of complex muscle architectures and geometries. Ann Biomed Eng 33(5):661–673

    Article  Google Scholar 

  • Blemker SS, Pinsky PM, Delp SL (2005) A 3d model of muscle reveals the causes of nonuniform strains in the biceps brachii. J Biomech 38:657–665

    Article  Google Scholar 

  • Böl M, Sturmat M, Weichert C, Kober C (2011) A new approach for the validation of skeletal muscle modelling using MRI data. Comput Mech 47(5):591–601

    Article  MATH  Google Scholar 

  • Bonet J, Wood RD (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Buchanan TS, Almdale DPJ, Lewis JL, Rymer WZ (1986) Characteristics of synergic relations during isometric contractions of human elbow muscles. J Neurophysiol 56(5):1225–41

    Google Scholar 

  • Buchanan TS, Delp SL, Solbeck JA (1998) Muscular resistance to varus and valgus loads at the elbow. J Biomech Eng 120(5):634–639

    Article  Google Scholar 

  • Buchanan TS, Lloyd DG, Manal K, Besier TF (2004) Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command. J Appl Biomech 20(4):367

    Article  Google Scholar 

  • Chi SW, Hodgson J, Chen JS, Edgerton VR, Shin DD, Roiz RA, Sinha S (2010) Finite element modeling reveals complex strain mechanics in the aponeuroses of contracting skeletal muscle. J Biomech 43(7):1243–1250

    Article  Google Scholar 

  • Chris BP, Andrew PJ, Hunter PJ (1997) Geometric modeling of the human torso using cubic hermite elements. Ann Biomed Eng 25:96–111

    Article  Google Scholar 

  • Christophy M, Faruk Senan NA, Lotz JC, O’Reilly OM (2011) A musculoskeletal model for the lumbar spine. Biomech Model Mechanobiol 11(1–2):19–34

    Google Scholar 

  • Chung JH (2008) Modelling mammographic mechanics. PhD thesis, Auckland Bioengineering Institute, The University of Auckland, New Zealand

  • Crowninshield RD, Brand RA (1981) A physiologically based criterion of muscle force prediction in locomotion. J Biomech 14(11):793–801

    Article  Google Scholar 

  • Feldman AG (1986) Once more on the equilibrium-point hypothesis (\(\lambda \) model) for motor control. J Motor Behav 18(1):17–54

    Article  Google Scholar 

  • Fernandez JW, Hunter PJ (2005) An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool. Biomech Model Mechanobiol 4(1):20–38

    Article  Google Scholar 

  • Fiorentino NM, Epstein FH, Blemker SS (2012) Activation and aponeurosis morphology affect in vivo muscle tissue strains near the myotendinous junction. J Biomech 45(4):647–652. doi:10.1016/j.jbiomech.2011.12.015

    Article  Google Scholar 

  • Garner BA, Pandy MG (2000) The obstacle-set method for representing muscle paths in musculoskeletal models. Comput Method Biomech Biomed Eng 3(1):1–30

    Article  Google Scholar 

  • Günther M, Ruder H (2003) Synthesis of two-dimensional human walking: a test of the \(\lambda \)-model. Biol Cybern 8:89–106

    Article  MATH  Google Scholar 

  • Günther M, Schmitt S, Wank V (2007) High-frequency oscillations as a consequence of neglected serial damping in Hill-type muscle models. Biol Cybern 97(1):63–79. doi:10.1007/s00422-007-0160-6

    Article  MATH  Google Scholar 

  • Günther M, Schmitt S, Wank V (2007) High-frequency oscillations as a consequence of neglected serial damping in hill-type muscle models. Biol Cybern 97(1):63–79

    Article  MATH  Google Scholar 

  • Haeufle D, Günther M, Bayer A, Schmitt S (2014) Hill-type muscle model with serial damping and eccentric force-velocity relation. J Biomech 47(6):1531–1536

    Article  Google Scholar 

  • Hatze H (1978) A general myocybernetic control model of skeletal muscle. Biol Cybern 28(3):143–157

    Article  MATH  Google Scholar 

  • Hawkins D, Bey M (1994) A comprehensive approach for studying muscle-tendon mechanics. J Biomech Eng 116(1):51–55

    Article  Google Scholar 

  • Heidlauf T, Röhrle O (2013) Modeling the chemoelectromechanical behavior of skeletal muscle using the parallel open-source software library OpenCMISS. Comput Math Methods Med 2013:1–14. doi:10.1155/2013/517287

    Article  MATH  Google Scholar 

  • Heidlauf T, Röhrle O (2014) A multiscale chemo-electro-mechanical skeletal muscle model to analyze muscle contraction and force generation for different muscle fiber arrangements. Front Physiol 5(498):1–14. doi:10.3389/fphys.2014.00498

    Google Scholar 

  • Heidlauf T, Negro F, Farina D, Röhrle O (2013) An integrated model of the neuromuscular system. In: 2013 6th International IEEE/EMBS conference on neural engineering (NER), IEEE, pp 227–230. doi:10.1109/NER.2013.6695913

  • Hof AL, Van Den Berg JW (1977) Linearity between the weighted sum of the EMGs of the human triceps surae and the total torque. J Biomech 10(9):529–539

    Article  Google Scholar 

  • Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, New York

    MATH  Google Scholar 

  • Houdijk H, Bobbert MF, de Haan A (2006) Evaluation of a Hill based muscle model for the energy cost and efficiency of muscular contraction. J Biomech 39(3):536–543. doi:10.1016/j.jbiomech.2004.11.033

  • Kistemaker DA, Van Soest AJ, Bobbert MF (2006) Is equilibrium point control feasible for fast goal-directed single-joint movements? J Neurophysiol 95(5):2898–2912. doi:10.1152/jn.00983.2005

  • Laursen TA (2002) Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer Science & Business Media, New York

    MATH  Google Scholar 

  • Lee SH, Sifakis E, Terzopoulos D (2009) Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans Graph 28(4):99

    Article  Google Scholar 

  • Lemos RR, Rokne J, Baranoski GVG, Kawakami Y, Kurihara T (2005) Modeling and simulating the deformation of human skeletal muscle based on anatomy and physiology. Comput Anim Virtual Worlds 16:319–330

    Article  Google Scholar 

  • Lloyd DG, Besier TF (2003) An emg-driven musculoskeletal model for estimation of the human knee joint moments across varied tasks. J Biomech 36:765–776

    Article  Google Scholar 

  • Lorussi F, Galatolo S, Caudai C, Tognetti A, De Rossi D (2006) Compliance control and feldman’s muscle model. In: The first IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics, 2006. BioRob 2006, IEEE, pp 1194–1199

  • Manal K, Buchanan TS (2003) A one-parameter neural activation to muscle activation model: estimating isometric joint moments from electromyograms. J Biomech 36(8):1197–1202. doi:10.1016/S0021-9290(03)00152-0

  • Markert B, Ehlers W, Karajan N (2005) A general polyconvex strain-energy function for fiber-reinforced materials. PAMM 5(1):245–246

    Article  Google Scholar 

  • Millard M, Uchida T, Seth A, Delp SL (2013) Flexing computational muscle: modeling and simulation of musculotendon dynamics. J Biomech Eng 135(2):021,005–021,011

    Article  Google Scholar 

  • Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11(9):582–592

    Article  MATH  Google Scholar 

  • Mordhorst M, Heidlauf T, Röhrle O (2015) Predicting electromyographic signals under realistic conditions using a multiscale chemo-electro-mechanical finite element model. Interface Focus 5(2): doi:10.1098/rsfs.2014.0076

  • Mörl F, Siebert T, Schmitt S, Blickhan R, Günther M (2012) Electro-mechanical delay in Hill-type muscle models. J Mech Med Biol 12(5):85–102. doi:10.1142/S0219519412500856

  • Morrison JB (1970) The mechanics of the knee joint in relation to normal walking. J Biomech 3(1):51–61

    Article  Google Scholar 

  • Murray WM, Delp SL, Buchanan TS (1995) Variation of muscle moment arms with elbow and forearm position. J Biomech 28(5):513–525

    Article  Google Scholar 

  • Murray WM, Buchanan TS, Delp SL (2000) The isometric functional capacity of muscles that cross the elbow. J Biomech 33(8):943–952. doi:10.1016/S0021-9290(00)00051-8

  • Oomens CWJ, Maenhout M, van Oijen CH, Drost MR, Baaijens FP (2003) Finite element modelling of contracting skeletal muscle. Philos Trans R Soc B 358:1453–1460

    Article  Google Scholar 

  • Pandy MG, Zajac FE, Sim E, Levine WS (1990) An optimal control model for maximum-height human jumping. J Biomech 23(12):1185–1198

    Article  Google Scholar 

  • Rivlin RS (1948) Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philos Trans R Soc Lond Ser A Math Phys Sci 241(835):379–397

    Article  MathSciNet  MATH  Google Scholar 

  • Röhrle O (2010) Simulating the electro-mechanical behavior of skeletal muscles. IEEE Comput Sci Eng 12(6):48–58. doi:10.1109/MCSE.2010.30

    Article  Google Scholar 

  • Röhrle O, Pullan AJ (2007) Three-dimensional finite element modelling of muscle forces during mastication. J Biomech 40(15):3363–3372

    Article  Google Scholar 

  • Röhrle O, Davidson JB, Pullan AJ (2008) Bridging scales: a three-dimensional electromechanical finite element model of skeletal muscle. J Sci Comput 30:2883–2904

    MATH  Google Scholar 

  • Röhrle O, Davidson JB, Pullan AJ (2012) A physiologically based, multi-scale model of skeletal muscle structure and function. Front Physiol 3:1–14. doi:10.3389/fphys.2012.00358

  • Röhrle O, Sprenger M, Ramasamy E, Heidlauf T (2013) Multiscale skeletal muscle modeling: from cellular level to a multi-segment skeletal muscle model of the upper limb. Springer, Netherlands, pp 103–116. doi:10.1007/978-94-007-5464-5_8

  • Rupp TK, Ehlers W, Karajan N, Günther M, Schmitt S (2015) A forward dynamics simulation of human lumbar spine flexion predicting the load sharing of intervertebral discs, ligaments, and musclesT. K. Rupp, W. Ehlers, N. Karajan, M. Günther & S. Schmitt. Biomech Model Mechanobiol 14(5):1081–1105

    Article  Google Scholar 

  • Schipplein O, Andriacchi TP (1991) Interaction between active and passive knee stabilizers during level walking. J Orthop Res 9(1):113–119

    Article  Google Scholar 

  • Seireg A, Arvikar R (1975) The prediction of muscular load sharing and joint forces in the lower extremities during walking. J Biomech 8(2):89–102. doi:10.1016/0021-9290(75)90089-5

  • Seireg A, Arvikar RJ (1973) A mathematical model for evaluation of forces in lower extremeties of the musculo-skeletal system. J Biomech 6(3):313–326

    Article  Google Scholar 

  • Sharafi B, Blemker SS (2010) A micromechanical model of skeletal muscle to explore the effects of fiber and fascicle geometry. J Biomech 43(16):3207–3213

    Article  Google Scholar 

  • Sharafi B, Ames EG, Holmes JW, Blemker SS (2011) Strains at the myotendinous junction predicted by a micromechanical model. J Biomech 44(16):2795–2801

    Article  Google Scholar 

  • Siebert T, Rode C, Herzog W, Till O, Blickhan R (2008) Nonlinearities make a difference: comparison of two common Hill-type models with real muscle. Biol Cybern 98(2):133–143. doi:10.1007/s00422-007-0197-6

  • Siebert T, Till O, Stutzig N, Günther M, Blickhan R (2014) Muscle force depends on the amount of transversal muscle loading. J Biomech 47(8):1822–1828

    Article  Google Scholar 

  • Spencer A (1972) Deformations of fibre-reinforced materials. Oxford science research papers. Clarendon Press, Oxford

    Google Scholar 

  • Spencer AJM (1971) Theory of invariants. Continuum Phys 1(Part III):239–352

    Google Scholar 

  • Spitzer V, Ackerman MJ, Scherzinger AL, Whitlock D (1996) The visible human male: a technical report. J Am Med Inform Assoc 3:118–130

    Article  Google Scholar 

  • Van Soest AJ, Bobbert MF (1993) The contribution of muscle properties in the control of explosive movements. Biol Cybern 69(3):195–204

    Article  Google Scholar 

  • Weiss JA, Gardiner JC (2001) Computational modeling of ligament mechanics. Crit Rev Biomed Eng 29(3):303–371

    Article  Google Scholar 

  • Winters JM (1990) Hill-based muscle models: a systems engineering perspective. Springer, Berlin, pp 69–93

  • Wriggers P (2002) Computational contact mechanic. Wiley, New York

    Google Scholar 

  • Wu T, Hung APL, Hunter P, Mithraratne K (2013) Modelling facial expressions: a framework for simulating nonlinear soft tissue deformations using embedded 3d muscles. Finite Elem Anal Des 76:63–70

    Article  Google Scholar 

  • Zajac FE (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical Rev Biomed Eng 17(4):359–411

  • Zheng Y, Mak AFT, Lue B (1999) Objective assessment of limb tissue elasticity: development of a manual indentation procedure. J Rehabil Res Dev 36(2):71–85

Download references

Acknowledgments

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement No. 306757 (LEAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Röhrle.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Röhrle, O., Sprenger, M. & Schmitt, S. A two-muscle, continuum-mechanical forward simulation of the upper limb. Biomech Model Mechanobiol 16, 743–762 (2017). https://doi.org/10.1007/s10237-016-0850-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-016-0850-x

Keywords

Navigation