Skip to main content
Log in

The mechanochemistry of cytoskeletal force generation

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

In this communication, we propose a model to study the non-equilibrium process by which actin stress fibers develop force in contractile cells. The emphasis here is on the non-equilibrium thermodynamics, which is necessary to address the mechanics as well as the chemistry of dynamic cell contractility. In this setting, we are able to develop a framework that relates (a) the dynamics of force generation within the cell and (b) the cell’s response to external stimuli to the chemical processes occurring within the cell, as well as to the mechanics of linkage between the stress fibers, focal adhesions and extracellular matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. In Olberding et al. (2010), the term treadmilling has been applied to the mechanism of focal adhesion translation.

    Fig. 2
    figure 2

    FA complex binding/unbinding and resulting focal adhesion ends velocities

  2. Note that the right-hand side of inequality (36) is positive, in compliance with condition (31c).

References

  • Aratyn-Schaus Y, Gardel ML (2010) Transient frictional slip between integrin and the ecm in focal adhesions under myosin ii tension. Curr Biol 20:1145–1153

    Article  Google Scholar 

  • Balaban N, Schwarz U, Riveline D, Goichberg P, Tzur G, Sabanay I et al (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3:466–473

    Article  Google Scholar 

  • Bell G (1978) Models for the specific adhesion of cells to cells. Science 200:618–627

    Article  Google Scholar 

  • Besser A, Safran S (2006) Force-induced adsorption and anisotropic growth of focal adhesions. Biophys J 90:3469–3484

    Article  Google Scholar 

  • Besser A, Schwartz U (2007) Coupling biochemistry and mechanics in cell adhesion a model for inhomogeneous stress fiber contraction. New J Phys 9:425–452

    Article  Google Scholar 

  • Besser A, Colombelli J, Stelzer E, Schwartz U (2011) Viscoelastic response of contractile filament bundles. Phys Rev 83(5):051902

    Google Scholar 

  • Califano J, Reinhart-King C (2010) Substrate stiffness and cell area predict cellular traction stresses in single cells and cells in contact. Cell Mol Bioeng 3:68–75

    Article  Google Scholar 

  • Callen H (1985) Thermodynamics and an introduction to thermostatistics. Wiley, New York

    MATH  Google Scholar 

  • Chan C, Odde D (2008) Traction dynamics of filopodia on compliant substrates. Science 322:1687–1691

    Article  Google Scholar 

  • Chrzanowska-Wodnicka M, Burridge K (1996) Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 113:1403–1415

    Article  Google Scholar 

  • Colombelli J, Besser A, Kress H, Reynaud E, Girard P, Caussinus E et al (2009) Mechanosensing in actin stress fibers revealed by a close correlation between force and protein localization. J Cell Sci 122:1665–1679

    Article  Google Scholar 

  • de Groot S, Mazur P (1984) Nonequilibrium thermodynamics. Dover, New York

    Google Scholar 

  • Debold E, Patlak J, Warshaw D (2005) Slip sliding away: load-dependence of velocity generated by skeletal muscle myosin molecules in the laser trap. Biophy J 89:L34–L36

    Article  Google Scholar 

  • Deshpande V, McMeeking R, Evans A (2006) A bio-chemo-mechanical model for cell contractility. Proc Natl Acad Sci 103:14015–14020

    Article  Google Scholar 

  • Deshpande V, Mrkisch M, McMeeking R, Evans A (2008) A bio-chemo–mechanical model for coupling cell contractility with focal adhesion formation. J Mech Phys Solids 56:1484–1510

    Article  MATH  Google Scholar 

  • Engler A, Sen S, Sweeney H, Discher D (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  Google Scholar 

  • Franke R, Grafe M, Schnittler H, Seiffge D, Mittermayer C, Drenckhahn D (1984) Induction of human vascular endothelial stress fibers by fluid shear stress. Nature 307:648–649

    Article  Google Scholar 

  • Gardel ML, Schneider IC, Aratyn-Schaus Y, M WC (2010) Mechanical integration of actin and adhesion dynamics in cell migration. Annu Rev Cell Dev Biol 26:315–333

    Article  Google Scholar 

  • Geiger B, Bershadsky A, Pankov R, Yamada K (2001) Transmembrane extracellular matrix-cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2:793–805

    Article  Google Scholar 

  • Ghibaudo M, Saez A, Trichet L, Xayaphoummine A, Browaeys J, Silberzan P, Buguin A, Ladoux B (2008) Traction forces and rigidity sensing regulate cell functions. Soft Matter 4:1836–1843

    Article  Google Scholar 

  • Harland B, Walcott B, Sun S (2011) Adhesion dynamics and durotaxis in migrating cells. Phys Biol 8:015011-1–015011-10

    Article  Google Scholar 

  • Hill A (1938) The heat of shortening and the dynamics constants of muscle. Proc R Soc Lond Ser B 126:136–195

    Article  Google Scholar 

  • Hirata H, Tatsumi H, Sokabe M (2008) Mechanical forces facilitate actin polymerization at focal adhesions in a zyxin-independent manner. J Cell Sci 121:2795–2804

    Article  Google Scholar 

  • Ingber D (2003) Tensegrity i. cell structure and hierarchical systems biology. J Cell Sci 116:1157–1173

    Article  Google Scholar 

  • Kaunas R (2008) Modeling cellular adaptation to mechanical stress. In: Artmann G, Chien S (eds) Bioengineering in cell and tissue research. Springer, New York, pp 317–348

    Chapter  Google Scholar 

  • Kaunas K, Huang Z, Hahn J (2010) A kinematic model coupling stress fiber dynamics with jnk activation in response to matrix stretching. J Theor Biol 264:593–603

    Article  MathSciNet  Google Scholar 

  • Kaunas R, Nguyen P, Usami S, Chien S (2005) Cooperative effects of rho and mechanical stretch on stress fiber organization. Proc Natl Acad Sci 102:15895–15900

    Article  Google Scholar 

  • Kong H, Polte T, Alsberg E, Mooney D (2005) Fret measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proc Natl Acad Sci 102:4300–4305

    Article  Google Scholar 

  • Kruse K, Julicher F (2000) Actively contracting bundles of polar filaments. Phys Rev Lett 85:1778–1781

    Article  Google Scholar 

  • Kumar S, Maxwell I, Heisterkamp A, Polte T, Lele T (2006) Viscoelastic relaxation of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys J 90:3762–3773

    Article  Google Scholar 

  • Lo CM, Wang HB, Dembo M, Wang YI (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79:144–152

    Article  Google Scholar 

  • Mann J, Lam R, Weng S, Sun Y, Fu J (2012) A siliconebased stretchable micropost array membrane for monitoring livecell subcellular cytoskeletal response. Lab Chip 12:731–740

    Article  Google Scholar 

  • Maraldi M, Valero C, Garikipati K (2014) A computational study of stress fiber-focal adhesion dynamics governing cell contractility. Biophys J 106:1–12

    Article  Google Scholar 

  • Olberding J, Thouless M, Arruda E, Garikipati K (2010) The non-equilibrium thermodynamics and kinetics of focal adhesion dynamics. PLoS One 4(e12):043

    Google Scholar 

  • Pelham R Jr, Wang Y (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci 94:13661–13665

    Article  Google Scholar 

  • Pellegrin S, Mellor H (2007) Actin stress fibres. J Cell Sci 120:3491–3499

    Article  Google Scholar 

  • Peterson L, Rajfur Z, Maddox A, Freel C, Chen Y, Edlund M et al (2004) Simultaneous stretching and contraction of stress fibers in vivo. Mol Biol Cell 15:3497–3508

    Article  Google Scholar 

  • Pollard T, Borisy G (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465

    Article  Google Scholar 

  • Riveline D, Zamir E, Balaban N, Schwarz U, Ishikazi T, Narumiya S et al (2001) Externally applied local mechanical force induces growth of focal contacts by an mdia1-dependent and rock-independent mechanism. J Cell Biol 153:1175–1185

    Article  Google Scholar 

  • Schwarz US, Gardel ML (2012) United we stand integrating the actin cytoskeleton and cellmatrix adhesions in cellular mechanotransduction. J Cell Sci 125:1–10

    Article  Google Scholar 

  • Shemesh T, Geiger B, Bershadsky A, Kozlov M (2005) Focal adhesions as mechanosensors: a physical mechanism. Proc Natl Acad Sci 102(12):383–388

    Google Scholar 

  • Stachowiak M, O’Shaughnessy B (2008) Kinetics of stress fibers. New J Phys 10:025002-1–025002-26

    Article  Google Scholar 

  • Stachowiak M, O’Shaughnessy B (2009) Recoil after severing reveals stress fiber contraction mechanisms. Biophys J 97:462–471

    Article  Google Scholar 

  • Tan J, Tien J, Pirone D, Gray D, Bhadriraju K, Chen C (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci 100:1484–1489

    Article  Google Scholar 

  • Walcott S, Sun S (2010) A mechanical model of actin stress fiber formation and substrate elasticity sensing in adherent cells. Proc Natl Acad Sci 107:7757–7762

  • Wu JQ, Pollard T (2005) Counting cytokinesis proteins globally and locally in fission yeast. Science 310:310–314

    Article  Google Scholar 

  • Zamir E, Geiger B (2001) Molecular complexity and dynamics of cell-matrix adhesions. J Cell Sc 114:3583–3590

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Garikipati.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 90 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maraldi, M., Garikipati, K. The mechanochemistry of cytoskeletal force generation. Biomech Model Mechanobiol 14, 59–72 (2015). https://doi.org/10.1007/s10237-014-0588-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-014-0588-2

Keywords

Navigation