Skip to main content
Log in

Analytical and numerical analyses of the micromechanics of soft fibrous connective tissues

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

State of the art research and treatment of biological tissues require accurate and efficient methods for describing their mechanical properties. Indeed, micromechanics-motivated approaches provide a systematic method for elevating relevant data from the microscopic level to the macroscopic one. In this work, the mechanical responses of hyperelastic tissues with one and two families of collagen fibers are analyzed by application of a new variational estimate accounting for their histology and the behaviors of their constituents. The resulting close-form expressions are used to determine the overall response of the wall of a healthy human coronary artery. To demonstrate the accuracy of the proposed method, these predictions are compared with corresponding 3D finite element simulations of a periodic unit cell of the tissue with two families of fibers. Throughout, the analytical predictions for the highly nonlinear and anisotropic tissue are in agreement with the numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agoras M, Lopez-Pamies O, Castañeda PP (2009) A general hyperelastic model for incompressible fiber-reinforced elastomers. J Mech Phys Solids 57: 268–286

    Article  MATH  Google Scholar 

  • Alastrué V, Martínez MA, Doblaré M, Menzel A (2009) Anisotropic micro-sphere-based finite elasticity applied to blood vessel modelling. J Mech Phys Solids 57: 178–203

    Article  MATH  Google Scholar 

  • Ambrosi D, Ateshian GA, Arruda EM, Cowin SC, Dumais J, Goriely A, Holzapfel GA, Humphrey JD, Kemkemer R, Kuhl E, Olberding JE, Taber LA, Garikipati K (2011) Perspectives on biological growth and remodeling. J Mech Phys Solids 59: 863–883

    Article  MathSciNet  Google Scholar 

  • Avery NC, Bailey AJ (2008) Restraining cross-links responsible for the mechanical properties of collagen fibers: natural and artificial. In: Fratzl P (ed) Collagen structure and mechanics, Chap. 4. Springer Science Business Media Inc, New York

    Google Scholar 

  • Balzani D, Neff P, Schröder J, Holzapfel GA (2006) A polyconvex framework for soft biological tissues. Adjustment to experimental data. Int J Solids Struct 43: 6052–6070

    Article  MATH  Google Scholar 

  • Brun M, Lopez-Pamies O, Ponte Castaneda P (2007) Homogenization estimates for fiber-reinforced elastomers with periodic microstructures. Int J Solids Struct 44: 5953–5979

    Article  MathSciNet  MATH  Google Scholar 

  • Chen H, Liu Y, Zhao X, Lanir Y, Kassab GS (2011) A micromechanics finite-strain constitutive model of fibrous tissue. J Mech Phys Solids 59: 1823–1837

    Article  MathSciNet  Google Scholar 

  • de Figueiredo Borges L, Jaldin RG, Dias RR, Stolf NAG, Michel JB, Gutierrez PS (2008) Collagen is reduced and disrupted in human aneurysms and dissections of ascending aorta. Hum Pathol 39: 437–443

    Article  Google Scholar 

  • deBotton G (2005) Transversely isotropic sequentially laminated composites in finite elasticity. J Mech Phys Solids 53: 1334–1361

    Article  MathSciNet  MATH  Google Scholar 

  • deBotton G, Hariton I (2006) Out-of-plane shear deformation of a neo-Hookean fiber composite. Phys Lett A 354: 156–160

    Article  MATH  Google Scholar 

  • deBotton G, Shmuel G (2009) Mechanics of composites with two families of finitely extensible fibers undergoing large deformations. J Mech Phys Solids 57: 1165–1181

    Article  MATH  Google Scholar 

  • deBotton G, Shmuel G (2010) A new variational estimate for the effective response of hyperelastic composites. J Mech Phys Solids 58: 466–483

    Article  MathSciNet  MATH  Google Scholar 

  • deBotton G, Hariton I, Socolsky EA (2006) Neo-Hookean fiber-reinforced composites in finite elasticity. J Mech Phys Solids 54: 533–559

    Article  MathSciNet  MATH  Google Scholar 

  • Eberth JF, Popovic N, Gresham VC, Wilson E, Humphrey JD (2010) Time course of carotid artery growth and remodeling in response to altered pulsatility. Am J Physiol Heart Circ Physiol 299: H1875–H1883

    Article  Google Scholar 

  • Fratzl, P (ed) (2008) Collagen structure and mechanics. Springer Science Business Media Inc, New York

    Google Scholar 

  • Freed AD, Doehring TC (2005) Elastic model for crimped collagen fibrils. J Biomech Eng Trans ASME 127: 587–593

    Article  Google Scholar 

  • Fung YC (1967) Elasticity of soft tissues in simple elongation. Am J Physiol 28: 1532–1544

    Google Scholar 

  • Gent AN (1996) A new constitutive relation for rubber. Rubber Chem Technol 69: 59–61

    Article  MathSciNet  Google Scholar 

  • Gundiah N, Ratcliffe MB, Pruitt LA (2007) Determination of strain energy function for arterial elastin: experiments using histology and mechanical tests. J Biomech 40: 586–594

    Article  Google Scholar 

  • Hariton I, deBotton G, Gasser TC, Holzapfel GA (2007) Stress-driven collagen fiber remodeling in arterial walls. Biomech Model Mechanobiol 6: 163–175

    Article  Google Scholar 

  • Hariton I, deBotton G, Gasser TC, Holzapfel GA (2007) Stress modulated collagen fibers remodeling in a human carotid bifurcation. J Theor Biol 248: 460–470

    Article  MathSciNet  Google Scholar 

  • Hill R (1972) On constitutive macro-variables for heterogeneous solids at finite strain. Proc R Soc Lond A 326: 131–147

    Article  MATH  Google Scholar 

  • Holzapfel GA (2006) Determination of material models for arterial walls from uniaxial extension tests and histological structure. J Theor Biol 238: 290–302

    Article  MathSciNet  Google Scholar 

  • Holzapfel GA (2008) Collagen in arterial walls: biomechanical aspects. In: Fratzl P (ed) Collagen structure and mechanics. Springer Science Business Media Inc, New York

    Google Scholar 

  • Holzapfel GA, Ogden RW (2010) Constitutive modelling of arteries. Proc R Soc Lond A 466: 1551–1597

    Article  MathSciNet  MATH  Google Scholar 

  • Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61: 1–48

    Article  MathSciNet  MATH  Google Scholar 

  • Holzapfel GA, Sommer G, Gasser CT, Regitnig P (2005) Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Physiol Heart Circ Physiol 289: H2048–H2058

    Article  Google Scholar 

  • Holzapfel GA, Stadler MA, Schulze-Bauer C (2002) A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing. Ann Biomed Eng 30: 753–767

    Article  Google Scholar 

  • Humphrey J (2003) Review paper: continuum biomechanics of soft biological tissues. Proc R Soc Lond Ser A Math Phys Eng Sci 459: 3–46

    Article  MathSciNet  MATH  Google Scholar 

  • Humphrey JD (2002) Cardiovascular solid mechanics: cells, tissues, and organs. Springer, New York

    Google Scholar 

  • Humphrey JD (2008) Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem Biophys 50: 53–78

    Article  Google Scholar 

  • Humphrey JD (2009) Vascular mechanics, mechanobiology, and remodeling. J Mech Med Biol 9: 243–257

    Article  Google Scholar 

  • Humphrey JD, Yin FC (1987) A new constitutive formulation for characterizing the mechanical behavior of soft tissues. Biophys J 52: 563–570

    Article  Google Scholar 

  • Kiousis DE, Rubinigg SF, Auer M, Holzapfel GA (2009) A methodology to analyze changes in lipid core and calcification onto fibrous cap vulnerability: the human atherosclerotic carotid bifurcation as an illustratory example. J Biomech Eng Trans ASME 131(12): 121002

    Article  Google Scholar 

  • Lanir Y (1983) Constitutive equations for fibrous connective tissues. J Biomech Eng Trans ASME 16: 1–12

    Google Scholar 

  • Lopez-Pamies O, Idiart M (2010) Fiber-reinforced hyperelastic solids: a realizable homogenization constitutive theory. J Eng Math 68: 57–83

    Article  MathSciNet  MATH  Google Scholar 

  • Menzel A, Waffenschmidt T (2009) A microsphere-based remodelling formulation for anisotropic biological tissues. Philos Trans R Soc A Math Phys Eng Sci 367: 3499–3523

    Article  MathSciNet  MATH  Google Scholar 

  • Mortier P, Holzapfel G, De Beule M, Van Loo D, Taeymans Y, Segers P, Verdonck P, Verhegghe B (2010) A novel simulation strategy for stent insertion and deployment in curved coronary bifurcations: comparison of three drug-eluting stents. Ann Biomed En 38: 88–99

    Article  Google Scholar 

  • Nerem RM, Seliktar D (2001) Vascular tissue engineering. Annu Rev Biomed Eng 3: 225–243

    Article  Google Scholar 

  • Ogden RW (1974) On the overall moduli of non-linear elastic composite materials. J Mech Phys Solids 22: 541–553

    Article  MATH  Google Scholar 

  • Ponte Castañeda P, Tiberio E (2000) A second-order homogenization method in finite elasticity and applications to black-filled elastomers. J Mech Phys Solids 48: 1389–1411

    Article  MathSciNet  MATH  Google Scholar 

  • Rudykh S, deBotton G (2011) Instabilities of hyperelastic fiber composites: micromechanical versus numerical analyses. J Elast 106: 123–147

    Article  MathSciNet  Google Scholar 

  • Shmuel G, deBotton G (2010) Out-of-plane shear of fiber composites at moderate stretch levels. J Eng Math 68: 85–97

    Article  MathSciNet  MATH  Google Scholar 

  • Stålhand J (2009) Determination of human arterial wall parameters from clinical data. Biomech Model Mechanobiol 8: 141–148

    Article  Google Scholar 

  • Taber LA, Humphrey JD (2001) Stress-modulated growth, residual stress, and vascular heterogeneity. J Biomech Eng Trans ASME 123: 528–535

    Article  Google Scholar 

  • Triantafyllidis N, Maker BN (1985) On the comparison between microscopic and macroscopic instability mechanisms in a class of fiber-reinforced composites. J Appl Mech Trans ASME 52: 794–800

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gal deBotton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

deBotton, G., Oren, T. Analytical and numerical analyses of the micromechanics of soft fibrous connective tissues. Biomech Model Mechanobiol 12, 151–166 (2013). https://doi.org/10.1007/s10237-012-0388-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-012-0388-5

Keywords

Navigation