Skip to main content

Advertisement

Log in

Using a dynamical advection to reconstruct a part of the SSH evolution in the context of SWOT, application to the Mediterranean Sea

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The main oceanographic objective of the future SWOT mission is to better characterize the ocean mesoscale and sub-mesoscale circulation, by observing a finer range of ocean topography dynamics down to 20 km wavelength. Despite the very high spatial resolution of the future satellite, it will not capture the time evolution of the shorter mesoscale signals, such as the formation and evolution of small eddies. SWOT will have an exact repeat cycle of 21 days, with near repeats around 5–10 days, depending on the latitude. Here, we investigate a technique to reconstruct the missing 2D SSH signal in the time between two satellite revisits. We use the dynamical interpolation (DI) technique developed by Ubelmann et al. (2015). Based on potential vorticity (hereafter PV) conservation using a one and a half layer quasi-geostrophic model, it features an active advection of the SSH field. This model has been tested in energetic open ocean regions such as the Gulf Stream and the Californian Current, and has given promising results. Here, we test this model in the Western Mediterranean Sea, a lower energy region with complex small scale physics, and compare the SSH reconstruction with the high-resolution Symphonie model. We investigate an extension of the simple dynamical model including a separated mean circulation. We find that the DI gives a 16–18% improvement in the reconstruction of the surface height and eddy kinetic energy fields, compared with a simple linear interpolation, and a 37% improvement in the Northern Current subregion. Reconstruction errors are higher during winter and autumn but statistically, the improvement from the DI is also better for these seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alberola C, Millot C, Font J (1995) On the seasonal and mesoscale variabilities of the Northern current during the PRIMO-0 experiment in the western Mediterranean-sea. Oceanol Acta 18(2):163–192

    Google Scholar 

  • Allou A, Forget P, Devenon J- L (2010) Submesoscale vortex structures at the entrance of the Gulf of Lions in the Northwestern Mediterranean sea. Cont Shelf Res 30(7):724–732. doi:10.1016/j.csr.2010.01.006

    Article  Google Scholar 

  • Arakawa A, Suarez M J (1983) Vertical differencing of the primitive equations in sigma coordinates. Mon Weather Rev 111(1):34–45. doi:10.1007/10.1175/1520-0493(1983)111%3C0034:VDOTPE%3E2.0.CO;2

    Article  Google Scholar 

  • Arbic B K, Flierl G R (2003) Coherent vortices and kinetic energy ribbons in asymptotic, quasi two-dimensional f-plane turbulence. Phys Fluids 15:2177–2189. doi:10.1063/1.1582183

    Article  Google Scholar 

  • Arbic B K, Flierl G R (2004) Effects of mean flow direction on energy, isotropy, and coherence of baroclinically unstable beta-plane geostrophic turbulence. J Phys Oceanogr 34(1):77–93

    Article  Google Scholar 

  • Ayoub N, Le Traon P-Y, De Mey P (1998) A description of the Mediterranean surface variable circulation from combined ERS-1 and TOPEX/POSEIDON altimetric data. J Mar Syst 18(1–3):3–40. doi:10.1016/S0924-7963(98)80004-3

    Article  Google Scholar 

  • Birol F, Delebecque C (2014) Using high sampling rate (10/20hz) altimeter data for the observation of coastal surface currents: a case study over the northwestern Mediterranean Sea. J Mar Syst 129:318–333

    Article  Google Scholar 

  • Bosse A (2016) Circulation générale et couplage physique-biogéochimie à (sous-)mésoéchelle en Méditerranée Nord-occidentale à partir de données in situ. Paris 6

  • Bosse A, Testor P, Mortier L, Béguery L, Bernardet K, Taillandier V, d’Ortenzio F, Prieur L, Coppola L, Bourrin F (2013) New insights of the northern current in the western mediterranean sea from gliders data: mean structure, transport, and seasonal variability. EGU General Assembly, Vienna, pp EGU2013–11315–2

  • Bouffard J, Nencioli F, Escudier R, Doglioli A M, Petrenko A A, Pascual A, Poulain P M, Elhmaidi D (2014) Lagrangian analysis of satellite-derived currents: application to the North Western Mediterranean coastal dynamics. Adv Space Res 53(5):788–801. doi:10.1016/j.asr.2013.12.020

    Article  Google Scholar 

  • Callies J, Ferrari R, Klymak JM, Gula J (2015) Seasonality in submesoscale turbulence. Nat Commun 6:6862. doi:10.1038/ncomms7862

    Article  Google Scholar 

  • Chelton D B, deSzoeke R A, Schlax M G, El Naggar K, Siwertz N (1998) Geographical variability of the first baroclinic Rossby radius of deformation. J Phys Oceanogr 28(3):433–460. doi:10.1175/1520-0485(1998)028%3C0433:GVOTFB%3E2.0.CO;2

    Article  Google Scholar 

  • Chelton D B, Schlax M G, Samelson R M (2011) Global observations of nonlinear mesoscale eddies. Progress Oceanogr 91(2):167–216. doi:10.1016/j.pocean.2011.01.002

    Article  Google Scholar 

  • Crepon M, Wald L, Monget J M (1982) Low frequency waves in the Ligurian sea during December 1977. J Geophys Res Oceans 87(C1):595–600

    Article  Google Scholar 

  • Damien P (2015) Etude de la circulation océanique en Méditerranée Occidentale à l’aide d’un modèle numérique à haute résolution: influence de la submésoéchelle. Toulouse 3

  • Dibarboure G, Boy F, Desjonqueres J D, Labroue S, Lasne Y, Picot N, Poisson J C, Thibaut P (2014) Investigating short-wavelength correlated errors on low-resolution mode altimetry. J Atmos Ocean Technol 31(6):1337–1362. doi:10.1175/JTECH-D-13-00081.1

    Article  Google Scholar 

  • Durand M, Rodriguez E, Alsdorf D E, Trigg M (2010) Estimating river depth from remote sensing swath interferometry measurements of river height, slope, and width. IEEE J Sel Top Appl Earth Observ Remote Sens 3 (1):20–31. doi:10.1109/JSTARS.2009.2033453

    Article  Google Scholar 

  • Escudier R, Bouffard J, Pascual A, Poulain P- M, Pujol M- I (2013) Improvement of coastal and mesoscale observation from space: application to the northwestern Mediterranean sea. Geophys Res Lett 40 (10):2148–2153. doi:10.1002/grl.50324

    Article  Google Scholar 

  • Escudier R, Renault L, Pascual A, Brasseur P, Chelton D, Beuvier J (2016) Eddy properties in the Western Mediterranean sea from satellite altimetry and a numerical simulation. J Geophys Res Oceans 121 (6):3990–4006. doi:10.1002/2015JC011371

    Article  Google Scholar 

  • Estournel C, Kondrachoff V, Marsaleix P, Vehil R (1997) The plume of the Rhone: numerical simulation and remote sensing. Cont Shelf Res 17(8):899–924. doi:10.1016/S0278-4343(96)00064-7

    Article  Google Scholar 

  • Estournel C, Testor P, Damien P, D’Ortenzio F, Marsaleix P, Conan P, Kessouri F, Durrieu de Madron X, Coppola L, Lellouche JM, Belamari S, Mortier L, Ulses C, Bouin MN, Prieur L (2016) High resolution modeling of dense water formation in the north-western Mediterranean during winter 2012–2013: processes and budget. J Geophys Res Oceans 121(7):5367–5392. doi:10.1002/2016JC011935

    Article  Google Scholar 

  • Flexas MM, Durrieu de Madron X, Garcia MA, Canals M, Arnau P (2002) Flow variability in the Gulf of Lions during the MATER HFF experiment (March–May 1997). J Mar Syst 33–34:197–214. doi:10.1016/S0924-7963(02)00059-3

    Article  Google Scholar 

  • Font J, Garcialadona E, Gorriz E (1995) The seasonality of mesoscale motion in the northern current of the western mediterranean - several years of evidence. Oceanol Acta 18(2):207–219

    Google Scholar 

  • Fu L-L, Chelton DB (2001) Chapter 2 large-scale ocean circulation. In: Cazenave L-LF, Anny (eds) International geophysics. Satellite altimetry and earth sciences: a handbook of techniques and applications, vol 69. Academic Press, pp 133–viii

  • Garcia-Ladona E, Djenidi S (1991) A reduced-gravity model of the Catalan sea. J Mar Syst 1(4):333–341. doi:10.1016/0924-7963(91)90002-C

    Article  Google Scholar 

  • Gascard J (1978) Mediterranean deep-water formation baroclinic instability and oceanic Eddies. MyScienceWork

  • Gill AE (1982) Atmosphere-ocean dynamics. Academic Press. Google-Books-ID: 8kFPh_SvnAIC

  • Grilli F, Pinardi N (1998) The computation of Rossby radii of deformation for the Mediterranean sea. MTP News 6(4):4–5

    Google Scholar 

  • Guihou K, Marmain J, Ourmières Y, Molcard A, Zakardjian B, Forget P (2013) A case study of the mesoscale dynamics in the north-western Mediterranean sea: a combined data–model approach. Ocean Dyn 63 (7):793–808. doi:10.1007/s10236-013-0619-z

    Article  Google Scholar 

  • Herrmann M, Somot S, Sevault F, Estournel C, Déqué M (2008) Modeling the deep convection in the northwestern Mediterranean sea using an Eddy-permitting and an Eddy-resolving model: case study of winter 1986–1987. J Geophys Res Oceans 113(C4):C04011. doi:10.1029/2006JC003991

    Article  Google Scholar 

  • Hu Z Y, Petrenko A A, Doglioli A M, Dekeyser I (2011) Numerical study of Eddy generation in the western part of the Gulf of Lion. J Geophys Res Oceans 116(C12):C12030. doi:10.1029/2011JC007074

    Article  Google Scholar 

  • Hua B-L, Thomasset F (1983) A numerical study of the effects of coastline geometry on wind-induced upwelling in the Gulf of Lions. J Phys Oceanogr 13(4):678–694. doi:10.1175/1520-0485(1983)013%3C0678:ANSOTE%3E2.0.CO;2

    Article  Google Scholar 

  • Killworth P D (1997) On the parameterization of eddy transfer Part I. Theory. J Mar Res 55(6):1171–1197. doi:10.1357/0022240973224102

    Article  Google Scholar 

  • Le Traon P- Y, Dibarboure G (1999) Mesoscale mapping capabilities of multiple-satellite altimeter missions. J Atmos Ocean Technol 16(9):1208–1223

    Article  Google Scholar 

  • Malanotte-Rizzoli P, Artale V, Borzelli-Eusebi G L, Brenner S, Crise A, Gacic M, Kress N, Marullo S, Ribera d’Alcalà M, Sofianos S, Tanhua T, Theocharis A, Alvarez M, Ashkenazy Y, Bergamasco A, Cardin V, Carniel S, Civitarese G, D’Ortenzio F, Font J, Garcia-Ladona E, Garcia-Lafuente J M, Gogou A, Gregoire M, Hainbucher D, Kontoyannis H, Kovacevic V, Kraskapoulou E, Kroskos G, Incarbona A, Mazzocchi M G, Orlic M, Ozsoy E, Pascual A, Poulain P M, Roether W, Rubino A, Schroeder K, Siokou-Frangou J, Souvermezoglou E, Sprovieri M, Tintoré J, Triantafyllou G (2014) Physical forcing and physical/biochemical variability of the Mediterranean sea: a review of unresolved issues and directions for future research. Ocean Sci 10(3):281–322. doi:10.5194/os-10-281-2014

    Article  Google Scholar 

  • Marsaleix P, Auclair F, Floor J W, Herrmann M J, Estournel C, Pairaud I, Ulses C (2008) Energy conservation issues in sigma-coordinate free-surface ocean models. Ocean Model 20(1):61–89. doi:10.1016/j.ocemod.2007.07.005

    Article  Google Scholar 

  • Marsaleix P, Auclair F, Estournel C (2009) Low-order pressure gradient schemes in sigma coordinate models: the seamount test revisited. Ocean Model 30(2–3):169–177. doi:10.1016/j.ocemod.2009.06.011

    Article  Google Scholar 

  • Marsaleix P, Auclair F, Duhaut T, Estournel C, Nguyen C, Ulses C (2012) Alternatives to the Robert–Asselin filter. Ocean Model 41:53–66. doi:10.1016/j.ocemod.2011.11.002

    Article  Google Scholar 

  • Millot C (1985) Some features of the Algerian current. J Geophys Res Oceans 90(C4):7169–7176. doi:10.1029/JC090iC04p07169

    Article  Google Scholar 

  • Millot C (1991) Mesoscale and seasonal variabilities of the circulation in the western Mediterranean. Dyn Atmos Oceans 15(3–5):179–214. doi:10.1016/0377-0265(91)90020-G

    Article  Google Scholar 

  • Morrow R, Le Traon P-Y (2012) Recent advances in observing mesoscale ocean dynamics with satellite altimetry. Adv Space Res 50(8):1062–1076. doi:10.1016/j.asr.2011.09.033

    Article  Google Scholar 

  • Oguz T, Macias D, Garcia-Lafuente J, Pascual A, Tintore J (2014) Fueling Plankton production by a meandering frontal jet: a case study for the Alboran sea (western Mediterranean). PLOS ONE 9(11):e111482. doi:10.1371/journal.pone.0111482

    Article  Google Scholar 

  • Pascual A, Buongiorno Nardelli B, Larnicol G, Emelianov M, Gomis D (2002) A case of an intense anticyclonic eddy in the Balearic sea (western Mediterranean). J Geophys Res Oceans 107(C11):3183. doi:10.1029/2001JC000913

    Article  Google Scholar 

  • Pascual A, Escudier R, Bouffard J, Sayol J (2011) High resolution altimeter gridded fields for coastal and regional studies: applications in the western Mediterranean. In: 5th coastal altimetry workshop. San-Diego https://hal.archives-ouvertes.fr/hal-00776969, p 59

  • Pascual A, Ruiz S, Buongiorno Nardelli B, Guinehut S, Iudicone D, Tintoré J (2015) Net primary production in the Gulf Stream sustained by quasi-geostrophic vertical exchanges. Geophys Res Lett 42 (2):2014GL062569. doi:10.1002/2014GL062569

    Article  Google Scholar 

  • Peliz A, Boutov D, Teles-MaChado A (2013) The Alboran sea mesoscale in a long term high resolution simulation: statistical analysis. Ocean Model 72:32–52. doi:10.1016/j.ocemod.2013.07.002

    Article  Google Scholar 

  • Petrenko A A (2003) Variability of circulation features in the Gulf of Lion NW Mediterranean sea. Importance of inertial currents. Oceanol Acta 26(4):323–338. doi:10.1016/S0399-1784(03)00038-0

    Article  Google Scholar 

  • Petrenko A, Leredde Y, Marsaleix P (2005) Circulation in a stratified and wind-forced Gulf of Lions, NW Mediterranean sea: in situ and modeling data. Cont Shelf Res 25(1):7–27. doi:10.1016/j.csr.2004.09.004

    Article  Google Scholar 

  • Pinardi N, Arneri E, Crise A, Ravaioli M, Zavatarelli M (2006) The physical, sedimentary and ecological structure and variability of shelf areas in the Mediterranean sea, vol 27. Harvard University Press

  • Pinardi N, Zavatarelli M, Adani M, Coppini G, Fratianni C, Oddo P, Simoncelli S, Tonani M, Lyubartsev V, Dobricic S, Bonaduce A (2015) Mediterranean sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: a retrospective analysis. Prog Oceanogr 132:318–332. doi:10.1016/j.pocean.2013.11.003

    Article  Google Scholar 

  • Poulain P M, Menna M, Mauri E (2012) Surface geostrophic circulation of the Mediterranean sea derived from drifter and satellite altimeter data. J Phys Oceanogr 42(6):973–990. doi:10.1175/JPO-D-11-0159.1

    Article  Google Scholar 

  • Preller R, Hurlburt H E (1982) A reduced gravity numerical model of circulation in the Alboran sea. In: Nihoul JCJ (ed) Elsevier oceanography series. Hydrodynamics of semi-enclosed seasproceedings of the 13th international liege colloquium on ocean hydrodynamics, vol 34. Elsevier, pp 75–89

  • Puillat I, Taupier-Letage I, Millot C (2002) Algerian Eddies lifetime can near 3 years. J Mar Syst 31 (4):245–259. doi:10.1016/S0924-7963(01)00056-2

    Article  Google Scholar 

  • Pujol M- I, Larnicol G (2005) Mediterranean sea eddy kinetic energy variability from 11 years of altimetric data. J Mar Syst 58(3–4):121–142. doi:10.1016/j.jmarsys.2005.07.005

    Article  Google Scholar 

  • Pujol M- I, Faugère Y, Taburet G, Dupuy S, Pelloquin C, Ablain M, Picot N (2016) DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years. Ocean Sci 12(5):1067–1090. doi:10.5194/os-12-1067-2016

    Article  Google Scholar 

  • Renault L, Oguz T, Pascual A, Vizoso G, Tintore J (2012) Surface circulation in the Alborán Sea (western Mediterranean) inferred from remotely sensed data. J Geophys Res Oceans 117(C8):C08009. doi:10.1029/2011JC007659

    Article  Google Scholar 

  • Robinson IS (2010) Discovering the Ocean from space: the unique applications of satellite oceanography. Springer Science & Business Media

  • Rodriguez E (2010) The Surface Water and Ocean Topography Mission (SWOT): the Ka-band Radar Interferometer (KaRIn) for water level measurements at all scales | Sensors, Systems, and Next-Generation Satellites XIV | ERS10 | SPIE Proceedings |SPIE. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=725302

  • Rubio A, Arnau P A, Espino M, Flexas MdM, Jordà G, Salat J, Puigdefàbregas J, S-Arcilla A (2005) A field study of the behaviour of an anticyclonic eddy on the Catalan continental shelf (NW Mediterranean). Prog Oceanogr 66(2–4):142–156. doi:10.1016/j.pocean.2004.07.012

    Article  Google Scholar 

  • Rubio A, Barnier B, Jordà G, Espino M, Marsaleix P (2009) Origin and dynamics of mesoscale eddies in the Catalan sea (NW Mediterranean): insight from a numerical model study. J Geophys Res Oceans 114 (C6):C06009. doi:10.1029/2007JC004245

    Article  Google Scholar 

  • Ruiz S, Font J, Emelianov M, Isern-Fontanet J, Millot C, Salas J, Taupier-Letage I (2002) Deep structure of an open sea eddy in the Algerian basin. J Mar Syst 33–34:179–195. doi:10.1016/S0924-7963(02)00058-1

    Article  Google Scholar 

  • Sammari C, Millot C, Prieur L (1995) Aspects of the seasonal and mesoscale variabilities of the Northern Current in the western Mediterranean Sea inferred from the PROLIG-2 and PROS-6 experiments. Deep-Sea Res I Oceanogr Res Pap 42(6):893–917. doi:10.1016/0967-0637(95)00031-Z

    Article  Google Scholar 

  • Schaeffer A (2010) Impact du vent sur la circulation hydrodynamique dans le Golfe du Lion: modélisation haute résolution. http://www.theses.fr/15323301X

  • Taupier-Letage I, Millot C (1986) General hydrodynamical features in the ligurian sea inferred from the dyome experiment. Oceanol Acta

  • Taupier-Letage I, Millot C (1988) Surface circulation in the Algerian basin during 1984. Oceanol Acta, Special issue

  • Testor P, Gascard J- C (2005) Large scale flow separation and mesoscale Eddy formation in the Algerian basin. Prog Oceanogr 66(2–4):211–230. doi:10.1016/j.pocean.2004.07.018

    Article  Google Scholar 

  • Ubelmann C, Klein P, Fu L L (2015) Dynamic interpolation of sea surface height and potential applications for future high-resolution altimetry mapping. J Atmos Ocean Technol. doi:10.1175/JTECH-D-14-00152.1

  • Wunsch C (1997) The vertical partition of oceanic horizontal kinetic energy. J Phys Oceanogr 27(8):1770–1794. doi:10.1175/1520-0485(1997)027%3C1770:TVPOOH%3E2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Claude Estournel for the Symphonie OGCM data used here, Florent Lyard for the modal decomposition and Romain Escudier for his figures. M Rogé was supported through a PhD grant from Centres National des Etudes Spatiales and Collecte Localisation Satellite. This work is a contribution to the French CNES-TOSCA programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marine Rogé.

Additional information

Responsible Editor: Ananda Pascual

This article is part of the Topical Collection on the 48th International Liège Colloquium on Ocean Dynamics, Liège, Belgium, 23–27 May 2016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogé, M., Morrow, R., Ubelmann, C. et al. Using a dynamical advection to reconstruct a part of the SSH evolution in the context of SWOT, application to the Mediterranean Sea. Ocean Dynamics 67, 1047–1066 (2017). https://doi.org/10.1007/s10236-017-1073-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-017-1073-0

Keywords

Navigation