Skip to main content

Advertisement

Log in

Subantarctic mode water: distribution and circulation

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The subduction and export of subantarctic mode water (SAMW) as part of the overturning circulation play an important role in global heat, freshwater, carbon and nutrient budgets. Here, the spatial distribution and export of SAMW is investigated using Argo profiles and a climatology. SAMW is identified by a dynamical tracer: a minimum in potential vorticity. We have found that SAMW consists of several modes with distinct properties in each oceanic basin. This conflicts with the previous view of SAMW as a continuous water mass that gradually cools and freshens to the east. The circulation paths of SAMW were determined using (modified) Montgomery streamlines on the density surfaces corresponding with potential vorticity minima. The distribution of the potential vorticity minima revealed “hotspots” where the different SAMW modes subduct north of the Subantarctic Front. The subducted SAMWs follow narrow export pathways into the subtropical gyres influenced by topography. The export of warmer, saltier modes in these “hotspots” contributes to the circumpolar evolution of mode water properties toward cooler, fresher and denser modes in the east.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. http://www.marine.csiro.au/~sal119/Argo.html; http://www.ifremer.fr/coriolis/cdc/argo.htm

  2. http://www.marine.csiro.au/~dunn/cars2009/

  3. Oxygen data corresponds to the World Ocean Circulation Experiment (WOCE) section I08N.

  4. Oxygen concentrations obtained from the Southern Ocean Data Base, http://wocesoatlas.tamu.edu/Sites/html/atlas/SOA_DATABASE.html.

References

  • Barker PJ, Dunn R, Wijffels SE and Domingues CM (2010). Pressure sensor drifts in Argo and their impacts. J Tech Ocean Atmos, in press

  • Boebel O, Davis RE, Ollitrault M, Peterson RG, Richardson PL, Schmid C, Zenk W (1999) The intermediate depth circualtion of the Western South Atlantic. Geophys Res Lett 26(21):3329–3332. doi:0094-8276/99/1999GL002355

    Article  Google Scholar 

  • De Miranda AP, Barnier B, Dewar WK (1999) Mode waters and subduction rates in a high–resolution South Atlantic simulation. J Mar Res 57:213–244

    Article  Google Scholar 

  • Domingues CM, Maltrud ME, Wijffels SE, Church JA, Tomczak M (2007) Simulated Lagrangian pathways between the Leeuwin current system and the upper–ocean circulation of the southeast Indian Ocean. Deep-Sea Res II (Special Issue) 54(8–10):797–817. doi:10.1016/j.dsr2.2006.10.003

    Article  Google Scholar 

  • Dong S, Sprintall J, Gille ST, Talley L (2008) Southern Ocean mixed–layer depth from Argo float profiles. J Geophys Res 113:C06013. doi:10.1029/2006JC004051

    Article  Google Scholar 

  • Dunn JR, Ridgway KR (2002) Mapping ocean properties in regions of complex topography. Deep Sea Res I 49:591–604

    Article  Google Scholar 

  • Fine RA (1993) Circulation and antarctic intermediate water in the South Indian Ocean. Deep Sea Res 40:2021–2042

    Article  Google Scholar 

  • Fine RA, Maillet KA, Sullivan KF, Willey D (2001) Circulation and ventilation of the Pacific Ocean. J Geophys Res 106(C10):22159–22178

    Article  Google Scholar 

  • Fine RA, Smethie WM Jr, Bullister JL, Rhein M, Min D-H, Warner MJ, Poisson A, Weiss RF (2008) Decadal ventilation and mxing of Indian ocean waters. Deep Sea Res I 55:20–37

    Article  Google Scholar 

  • Hanawa K, Talley LD (2001) Mode waters. In: Siedler G, Church J, Gould J (eds) Ocean circulation and climate, international geophysics series. Academic, New York, pp 373–386

    Chapter  Google Scholar 

  • Herraiz-Borreguero L, and Rintoul SR (2010) Regional circulation and its impact on upper ocean variability south of Tasmania (Australia). Deep-Sea Research II—Antarctic Biogeochemistry special edition, in press.

  • Iudicone D, Rodgers KB, Schopp R, Madec G (2007) An exchange window for the injection of Antarctic intermediate water into the South Pacific. J Phys Oceanogr 37:31–49. doi:10.1175/JPO2985.1

    Article  Google Scholar 

  • Jackett DR, McDougall TJ (1997) A neutral density variable for the world’s oceans. J Phys Oceanogr 27:237–263. doi:10.1175/1520-0485(1997)027

    Article  Google Scholar 

  • Karstensen J, Quadfasel D (2002a) Formation of southern hemisphere thermocline waters: water mass conversion and subduction. J Phys Oceanogr 32:3020–3038

    Article  Google Scholar 

  • Karstensen J, Quadfasel D (2002b) Water subducted into the Indian Ocean subtropical gyre. Deep Sea Res II 49:1441–1457

    Article  Google Scholar 

  • Karstensen J, Tomczak M (1997) Ventilation processes and water mass ages in thermocline of the southeast Indian Ocean. Geophys Res Lett 24:2777–2780

    Article  Google Scholar 

  • Lass HU, Mohrholz V (2007) On the interaction between the subtropical gyre and the subtropical cell on the shelf of the SE Atlantic. J Mar Res 74:1–43

    Google Scholar 

  • Maamaatuaiahutapu K, Provost C, Andrié C, Vigan X (1994) Origin and ages of mode waters in the Brazil–Malvinas confluence region during austral winter 1994. J Geophys Res 104(C9):21051–21061

    Article  Google Scholar 

  • McCarthy M, Talley LD (1999) Three–dimensional isonetral potential vorticity structure in the Indian Ocean. J Geophys Res 104(C6):13251–13267

    Article  Google Scholar 

  • McCartney MS (1977) In: Angel M (ed) Subantarctic mode water. In a voyage of discovery, supplement to deep–sea research George Deacon 70th anniversary volume. Pergamon, New York, pp 103–119

    Google Scholar 

  • McCartney MS (1982) The subtropical recirculation of mode waters. J Mar Res 40(Suppl):427–464

    Google Scholar 

  • McCartney MS, and Baringer MO (1993) Notes on the S. Pacific hydrographic section near 32 °S—WHP P. WOCE Notes, 5.

  • McDougal TJ, Klocker A (2010) An approximate geostrophic streamfunction for use in density surfaces. Ocean Model 32:105–117

    Article  Google Scholar 

  • McDougall TJ (1989) Streamfunctions for the lateral velocity vector in a compressible ocean. J Mar Res 47:267–284

    Article  Google Scholar 

  • Mémery L, Arhan M, Alvarez-Salgado XA, M-J Messias, Mercier H, Castro GC, Rios AF (2000) The water masses along the western boundary of the south and equatorial Atlantic. Prog Oceanogr 47:69–98

    Article  Google Scholar 

  • Montgomery RB (1937) A suggested method for representing gradient flow in isentropic surfaces. Bull Am Meteorol Soc 18:210–212

    Google Scholar 

  • Naveira-Garabato AC, Jullion L, Stevens DP, Heywood KJ, King BA (2009) Variability of subantarctic mode water and antarctic intermediate water in Drake passage during the late 20th and early 21 st. centuries. J Clim 22(13):3361–3388. doi:10.1175/2009JCLI2621.1

    Article  Google Scholar 

  • Naviera-Garabato AC, Stevens DP, Heywood KJ (2003) Water mass conversion, fluxes, and mixing in the Scotia Sea diagnosed by an inverse model. J Phys Oceaongr 33:2565–2568

    Article  Google Scholar 

  • Provost C, Gana S, Garçon V, Maamaatuaiahutapu K, England M (1995) Hydrographic conditions in the Brazil–Mavinas confluence during austral summer 1990. J Geophys Res 110(C6):10655–10678

    Article  Google Scholar 

  • Qu T, Gao S, Fukumori I, Fine RA, Lindstrom EJ (2008) Subduction of South Pacific waters. Geophys Res Lett 35:L02610. doi:10.1029/2007GL032605

    Article  Google Scholar 

  • Reid JL (1997) On the total geostrophic circulation of the Pacific Ocean: flow patterns, tracers, and transports. Prog Oceanogr 39:263–352

    Article  Google Scholar 

  • Reid JL (2003) On the geostrophic circulation of the Indian Ocean: flow patterns, tracers, and transports. Prog Oceanogr 56:137–186

    Article  Google Scholar 

  • Ridgway KR, Dunn JR, Wilkin JL (2002) Ocean interpolation by four-dimensional least squares–application to the waters around Australia. J Atmos Ocean Technol 19(9):1357–1375

    Article  Google Scholar 

  • Rintoul SR, England MH (2002) Ekman transport dominates local air-sea fluxes in driving variability of subantarctic mode water. J Phys Oceanogr 32:1308–1321

    Google Scholar 

  • Roden G (1986) Thermohaline fronts and baroclinic flow in the Argentine basin during the austral spring of 1984. J Geophys Res 91:5075–5093

    Article  Google Scholar 

  • Sallèe JB, Wienders N, Morrow R, Speer K (2006) Formation of subantarctic mode water in the Southeastern Indian Ocean. Ocean Dyn 56:525–542

    Article  Google Scholar 

  • Sallèe JB, Morrow R, Speer K (2008) Eddy heat diffusion and subantarctic mode water formation. Geophys Res Lett 35:L05607

    Article  Google Scholar 

  • Sallèe JB, Speer K, Rintoul SR, Wijffels S (2010) Southern Ocean thermocline ventilation. J Phys Oceanogr 40(3):509–529

    Article  Google Scholar 

  • Scharffenberg MG, Stammer D (2010) Seasonal variations of the large-scale geostrophic flow field and eddy kinetic energy inferred from the TOPEX/Poseidon and Jason-1 tandem mission data. J Geophys Res 115:C02008. doi:10.1029/2008JC005242,2010

    Article  Google Scholar 

  • Sloyan B, Rintoul SR (2001) Circulation, renewal and modification of Antarctic mode and intermediate water. J Phys Oceanogr 31:1005–1030

    Article  Google Scholar 

  • Sokolov S, Rintoul SR (2000) Circulation and water masses along WOCE section P11: Papua New Guinea to Tasmania. J Mar Res 58:223–268

    Article  Google Scholar 

  • Stramma L, England M (1999) On the water masses and mean circulation of the South Atlantic Ocean. J Geophys Res 104(C9):20863–20883

    Article  Google Scholar 

  • Stramma L, Lutjeharms JRE (1997) The flow field of the subtropical gyre of the South Indian Ocean. J Geophys Res 102(C3):5513–5530

    Article  Google Scholar 

  • Talley LD (1996) Antarctic intermediate water in the South Atlantic. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds) The South Atlantic: present and past circulation. Springer, New York, pp 219–238

    Google Scholar 

  • Talley LD (1999) Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulations. Mechanisms of global climate change at millennial time scales. Geophys Monogr 112:1–22

    Google Scholar 

  • Tsuchiya M, Talley LD, McCartney MS (1994) Water–mass distributions in the western South Atlantic; a section from the South Georgia Island (54 S) northward across the equator. J Mar Res 52:55–81

    Article  Google Scholar 

  • Wijffels SE, Toole JM, Davis R (2001) Revisiting the South Pacific subtropical circulation: a synthesis of the world ocean circulation experiment observations along 32 °S. J Geophys Res 106(C9):19481–19513

    Article  Google Scholar 

  • Wyrtki K (1971) Oceanographic Atlas of the international Indian Ocean expedition. National Science Foundation, Washington DC, p 531

    Google Scholar 

  • You Y (1998) Intermediate water circulation and ventilation in the Indian Ocean derived from water-mass contributions. J Mar Res 56:1029–1067

    Article  Google Scholar 

  • You Y, Tomczak M (1993) Thermocline circulation and ventilation in the Indian Ocean derived from water mass analysis. Deep Sea Res 40:13–56

    Article  Google Scholar 

  • Zhang H-M, Hogg NG (1992) Circulation and water mass balance in the Brazil Basin. J Mar Res 50:385–420

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Herraiz-Borreguero.

Additional information

Responsible Editor: Karen J. Heywood

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herraiz-Borreguero, L., Rintoul, S.R. Subantarctic mode water: distribution and circulation. Ocean Dynamics 61, 103–126 (2011). https://doi.org/10.1007/s10236-010-0352-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-010-0352-9

Keywords

Navigation