Skip to main content

Advertisement

Log in

Application of modified Patankar schemes to stiff biogeochemical models for the water column

  • Original paper
  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we apply recently developed positivity preserving and conservative Modified Patankar-type solvers for ordinary differential equations to a simple stiff biogeochemical model for the water column. The performance of this scheme is compared to schemes which are not unconditionally positivity preserving (the first-order Euler and the second- and fourth-order Runge–Kutta schemes) and to schemes which are not conservative (the first- and second-order Patankar schemes). The biogeochemical model chosen as a test ground is a standard nutrient–phytoplankton–zooplankton–detritus (NPZD) model, which has been made stiff by substantially decreasing the half saturation concentration for nutrients. For evaluating the stiffness of the biogeochemical model, so-called numerical time scales are defined which are obtained empirically by applying high-resolution numerical schemes. For all ODE solvers under investigation, the temporal error is analysed for a simple exponential decay law. The performance of all schemes is compared to a high-resolution high-order reference solution. As a result, the second-order modified Patankar–Runge–Kutta scheme gives a good agreement with the reference solution even for time steps 10 times longer than the shortest numerical time scale of the problem. Other schemes do either compute negative values for non-negative state variables (fully explicit schemes), violate conservation (the Patankar schemes) or show low accuracy (all first-order schemes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdulle A (2001) Fourth order Chebyshev methods with recurrence relations. SIAM J Sci Comp 23:2042–2055

    Google Scholar 

  • Abdulle A, Medovikov AA (2001) Second order Chebyshev methods based on orthogonal polynomials. Numer Math 90:1–18

    Article  Google Scholar 

  • Bolding K, Burchard H, Pohlmann T, Stips A (2002) Turbulent mixing in the Northern North Sea: a numerical model study. Cont Shelf Res 22:2707–2724

    Article  Google Scholar 

  • Burchard H, Deleersnijder E, Meister A (2003) A high-order conservative Patankar-type discretisation for stiff systems of production-destruction equations. Appl Numer Math 47:1–30

    Article  Google Scholar 

  • Burchard H, Bolding K, Kühn W, Meister A, Neumann T,Umlauf L (2005) Description of a flexible and extendable physical-biogeochemical model system for the water column. J Mar Sys (in press)

  • Deleersnijder E, Beckers J-M, Campin J-M, El Mohajir M, Fichefet T, Luyten P (1997) Some mathematical problems associated with the development and use of marine models. In: Diaz JI (ed) The mathematics of models for climatology and environment, vol 48. of NATO ASI Series, Springer, Berlin Heidelberg New York, pp 41–86

  • Fasham MJR, Ducklow HW, McKelvie SM (1990) A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J Mar Res 48:591–639

    Google Scholar 

  • Fennel W, Neumann T (1996) The mesoscale variability of nutrients and plankton as seen in a coupled model. Dt Hydrogr Z 48:49–71

    Article  Google Scholar 

  • Hairer E, Wanner G (2004) Solving ordinary differential equations II, Series in computational mathematics 14, 3rd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hairer E, Nørsett S, Wanner G (2000) Solving ordinary differential equations I, Series in computational mathematics 8, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Harrison WG, Harris L, Irwin BD (1996) The kinetics of nitrogen utilization in the oceanic mixed layer: nitrate and ammonium interactions at nanomolar concentrations. Limnol Oceanogr 41:16–32

    Article  Google Scholar 

  • Horváth Z (1998) Positivity of Runge–Kutta and diagonally split Runge–Kutta methods. Appl Numer Math 28:309–326

    Article  Google Scholar 

  • van der Houwen PJ (1996) The development of Runge–Kutta methods for parabolic differential equations. Appl Num Math 20:261–273

    Article  Google Scholar 

  • van der Houwen PJ, Sommeijer BP (1980) On the internal stability of explicit m-stage Runge–Kutta methods for large m-values. ZAMM 60:479–485

    Article  Google Scholar 

  • Hundsdorfer W, Verwer JG (2003) Numerical solution of time-dependent advection-diffusion-reaction equations0, vol 33 of Series in computational mathematics. Springer, Berlin Heidelberg New York

  • Kondo J (1975) Air-sea bulk transfer coefficients in diabatic conditions. Bound Layer Meteor 9:91–112

    Article  Google Scholar 

  • Kühn W, Radach G (1997) A one-dimensional physical-biological model study of the pelagic nitrogen cycling during the spring bloom in the northern North Sea (FLEX’76). J Mar Res 55:687–734

    Article  Google Scholar 

  • Lebedev V (2000) Explicit difference schemes for solving stiff problems with a complex or separable spectrum. Comp Math Math Phys 40:1729–1740

    Google Scholar 

  • Leonard BP (1991) The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Comput Meth Appl Mech Eng 88:17–74

    Article  Google Scholar 

  • Medovikov AA (1998) High order explicit methods for stiff ordinary differential equations. BIT 38:372–390

    Article  Google Scholar 

  • Meister A (1998) Comparison of different Krylov subspace methods embedded in an implicit finite volume scheme for the computation of viscous and inviscid flow fields on unstructured grids. J Comput Phys 140:311–345

    Article  Google Scholar 

  • Oschlies A, Kähler P (2004) Biotic contribution to air-sea fluxes of CO2 and O2 and its relation to new production, export production, and net community production. Global Biogeochemical Cycles 18. GB1015, doi:10.1029/2003GB002094

  • Patankar SV (1980) Numerical heat transfer and fluid flow. McGraw-Hill, New York

    Google Scholar 

  • Pietrzak J (1998) The use of TVD limiters for forward-in-time upstream-biased advection schemes in ocean modeling. Mon Weather Rev 126:812–830

    Article  Google Scholar 

  • Popova EE, Ryabchenko VA, Fasham MJR (2000) Biological pump and vertical mixing in the southern ocean: their impact on atmospheric CO2. Global Biogeochem Cycles 14:477–498

    Article  Google Scholar 

  • Robertson HH (1966) The solution of a set of reaction rate equations. In: Walsh J (ed) Numerical analysis, an introduction. Academic, New York, pp 178–182

    Google Scholar 

  • Sandu A, Verwer J, van Loon M, Carmichael G, Potra F, Dabdub D, Seinfeld J (1997) Benchmarking stiff ODE solvers for atmospheric chemistry problems I: Implicit versus explicit. Atmos Environ 31:3151–3166

    Article  Google Scholar 

  • Soetaert K, Herman PMJ, Middelburg JJ (1996) A model of early diagenetic processes from the shelf to abyssal depths. Geochim Cosmochim Acta 60:1019–1040

    Article  Google Scholar 

  • Verwer JG (1996) Explicit Runge–Kutta methods for parabolic partial differential equations. Appl Num Math 22:359–379

    Article  Google Scholar 

  • Weber L, Völker C, Schartau M, Wolf-Gladrow DA (2005) Modelling the speciation and biochemistry of iron at the Bermuda Atlantik Time-series Study site, Global Biogeochemical Cycles, 19. doi:10.1029/2004GB002340

Download references

Acknowledgements

Substantial parts of this work were carried out during a visit of Hans Burchard in Louvain-la-Neuve, funded by the Institut d’ Astronomie et de Géophysique G. Lemaî tre of the Université Catholique de Louvain. Eric Deleersnijder is a Research Associate with the Belgian National Fund for Scientific Research (FNRS) and his contribution to the present study was made in the scope of the project “A second-generation model of the ocean system”, which is funded by the Communauté Française de Belgique (Actions de Recherche Concertée) (see http://www.astr.ucl.ac.be/SLIM). We are grateful to Karsten Bolding (Baaring, Denmark) who has provided the computational framework for the biogeochemical calculations carried out here. Finally, we acknowledge the critical comments of two anonymous reviewers who helped us to substantially improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Burchard.

Additional information

Communicated by Phil Dyke

Appendices

Appendix 1

Discrete schemes for reaction terms

In this section, the ODE solvers used in the present investigation are given. Here, \(\underline{c}^{n}=(c_{i}^{n})_{i=1,\ldots,I}\) represents the discrete result vector at the old time step and \(\underline{c}^{n+1}=(c_{i}^{n+1})_{i=1,\ldots,I}\) at the new time step.

Conservative schemes

First-order Euler-forward (E1)

$$ c_{i}^{n+1} = c_{i}^{n} + \Delta t \left\{P_{i}\left(\underline{c}^{n}\right) - D_{i}\left(\underline{c}^n\right) \right\}.$$
(21)

Second-order Runge–Kutta (RK2)

$$\left. { \begin{array}{*{20}l} c^{(1)}_{i} = c^{n}_{i} + \Delta t \left\{ {P_{i} (\underline{c}^{n} ) - D_{i} (\underline{c}^{n} )} \right\}, \\ c^{n + 1}_{i} = c^{n}_{i} + \frac{\Delta t}{2} \left\{P_{i} (\underline{c}^{n}) + P_{i} \left( {\underline{c}^{(1)} } \right) - D_{i} (\underline{c} ^{n} ) - D_{i} \left( {\underline{c} ^{(1)} } \right)\right\}. \\ \end{array} } \right\}$$
(22)

Fourth-order Runge–Kutta (RK4)

$$ \left. {\begin{array}{*{20}l} c_{i}^{(1)} = c_{i}^{n} + \Delta t \left\{P_{i}(\underline{c}^{n}) - D_{i}(\underline{c}^{n})\right\} \\ c_{i}^{(2)} = c_{i}^{n} + \Delta t \left\{P_{i}\left(\frac{1}{2}\left(\underline{c}^{n} + \underline{c}^{(1)}\right)\right) - D_{i}\left(\frac{1}{2}\left(\underline{c}^{n} + \underline{c}^{(1)}\right)\right)\right\} \\ c_{i}^{(3)} = c_{i}^{n} + \Delta t \left\{P_{i}\left(\frac{1}{2}\left(\underline{c}^{n} + \underline{c}^{(2)} \right)\right) - D_{i}\left(\frac{1}{2}\left(\underline{c}^{n} + \underline{c}^{(2)}\right)\right)\right\}\\ c_{i}^{(4)} = c_{i}^{n} + \Delta t \left\{P_{i}\left(\underline{c}^{(3)}\right) - D_{i}\left(\underline{c}^{(3)}\right)\right\}\\ c_{i}^{n+1} = \frac{1}{6} \left\{c_{i}^{(1)} + 2c_{i}^{(2)} + 2c_{i}^{(3)} + c_{i}^{(4)} \right\}.\\ \end{array} } \right\}$$
(23)

Positivity-preserving schemes

First-order Patankar–Euler scheme (PE1)

$$ c_{i}^{n+1} = c_{i}^{n} + \Delta t \left\{P_{i}\left(\underline{c}^{n}\right) - D_{i}\left(\underline{c}^{n}\right) \frac{{c_{i}^{n+1}}}{{c_{i}^{n}}} \right\}.$$
(24)

Second-order Patankar–Runge–Kutta (PRK2)

$$ \left. {\begin{array}{*{20}l} c_{i}^{(1)} = c_{i}^{n} + \Delta t \left\{P_{i}\left(\underline{c}^{n}\right) - D_{i}\left(\underline {c}^n\right) \frac{{c_i^{(1)}}}{{c_i^n}}\right\},\\ c_{i}^{n+1} = c_{i}^{n} + \frac{{\Delta t}}{{2}} \left\{P_{i}\left(\underline{c}^n\right) + P_{i}\left(\underline{c}^{(1)}\right) - \left(D_{i}\left(\underline{c}^{n}\right) + D_{i}\left(\underline{c}^{(1)}\right)\right) \frac{{c_i^{n+1}}}{{c_i^{(1)}}} \right\}.\\ \end{array} } \right\}$$
(25)

Conservative and positivity-preserving schemes

First-order modified Patankar–Euler scheme (MPE1)

$$ c_{i}^{n+1} = c_{i}^{n} + \Delta t \left\{\sum\limits_{j=1}^{I} p_{i,j}\left(\underline{c}^{n}\right) \frac{{c_{j}^{n+1}}}{{c_{j}^{n}}} - \sum\limits_{j=1}^{I} d_{i,j}\left(\underline{c}^{n}\right)\frac{{c_{i}^{n+1}}}{{c_{i}^{n}}} \right\}.$$
(26)

Second-order modified Patankar–Runge–Kutta (MPRK2)

$$ \left. {\begin{array}{*{20}l} c_{i}^{(1)} = c_{i}^{n} + \Delta t \left\{\sum\limits_{j=1}^{I} p_{i,j}\left(\underline{c}^{n}\right)\frac{{c_{j}^{(1)}}}{ {c_{j}^{n}}} - \sum\limits_{j=1}^{I} d_{i,j}\left(\underline{c}^{n}\right) \frac{{c_i^{(1)}}}{{c_i^n}}\right\},\\ c_{i}^{n+1} = c_{i}^{n} + \frac{{\Delta t}}{{2}} \left\{\sum\limits_{j=1}^{I} \left(p_{i,j}\left(\underline{c}^{n}\right) + p_{i,j}\left(\underline{c}^{(1)}\right) \right) \frac{{c_{j}^{n+1}}}{{c_{j}^{(1)}}} - \sum\limits_{j=1}^{I} \left(d_{i,j}\left(\underline{c}^{n}\right) + d_{i,j}\left(\underline{c}^{(1)}\right) \right) \frac{{c_{i}^{n+1}}}{{c_{i}^{(1)}}} \right\}.\\ \end{array} } \right\}$$
(27)

Appendix 2

NPZD model details

The NPZD model described in Sect. NPZD model consists of I=4 state variables, see Table 3.

Table 3 State variables of the NPZD model

Seven processes expressed as sink terms are included in this conservative model, see Eqs. 28, 29, 30, 31, 32, 33, 34, 35.

Nutrient uptake by phytoplankton

$$d_{np}=r_{\max} \frac{{I_{\rm PAR}}}{I_{\rm opt}}\exp \left(1-\frac{{I_{\rm PAR}}}{{I_{\rm opt}}}\right)\frac{{c_n}}{{\alpha+c_{n}}}c_{p}$$
(28)

with

$$I_{\rm opt}=\max\left(\frac{1}{4}I_{\rm PAR},I_{\min}\right).$$
(29)

Grazing of zooplankton on phytoplankton

$$d_{pz}=g_{\max}\left(1-\exp \left(-I_{v}^{2}c_{p}^{2}\right)\right)c_{z} $$
(30)

Phytoplankton excretion

$$ d_{pn} = r_{pn}c_{p}$$
(31)

Zooplankton excretion

$$ d_{zn} = r_{zn} c_{z} $$
(32)

Remineralisation of detritus into nutrients

$$ d_{dn} = r_{dn} c_{d}$$
(33)

Phytoplankton mortality

$$ d_{pd} = r_{pd} c_{p}$$
(34)

Zooplankton mortality

$$ d_{zd} = r_{zd} c_{z}$$
(35)

All empirical parameters for the NPZD model are given in Table 4.

Table 4 Empirical constants used for the NPZD model

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burchard, H., Deleersnijder, E. & Meister, A. Application of modified Patankar schemes to stiff biogeochemical models for the water column. Ocean Dynamics 55, 326–337 (2005). https://doi.org/10.1007/s10236-005-0001-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-005-0001-x

Keywords

Navigation