1 Introduction and main results

Denote by \(\mathcal M ^+(\mathbb R _+)\) the class of all nonnegative measurable functions on \(\mathbb R _+\equiv (0,+\infty ).\) Let \(f\in \mathcal M ^+(\mathbb R _+).\) Set

$$\begin{aligned} Hf(x)=\frac{1}{x}\int \limits _0^x f(t)\,\text{ d}t \end{aligned}$$

and

$$\begin{aligned} H^*f(x)=\int \limits _x^\infty \frac{f(t)}{t}\,\text{ d}t. \end{aligned}$$

These equalities define the classical Hardy operator \(H\) and its dual operator \(H^*\). By Hardy’s inequalities [5, Ch. 9], these operators are bounded in \(L^p(\mathbb R _+)\) for any \(1<p<\infty .\) Furthermore, it is easy to show that for any \(f\in \mathcal M ^+(\mathbb R _+)\) and any \(1<p<\infty \), the \(L^p\)-norms of \(Hf\) and \(H^*f\) are equivalent. Indeed, let \(f\in \mathcal M ^+(\mathbb R _+).\) By Fubini’s theorem,

$$\begin{aligned} Hf(x)=\frac{1}{x}\int \limits _0^x \text{ d}t\int \limits _t^x\frac{f(u)}{u}\,\text{ d}u\le \frac{1}{x}\int \limits _0^x H^*f(t)\,\text{ d}t. \end{aligned}$$

On the other hand, Fubini’s theorem gives that

$$\begin{aligned} H^*f(x)=\int \limits _x^\infty \frac{\text{ d}u}{u^2}\int \limits _x^u f(t)\,\text{ d}t\le \int \limits _x^\infty \frac{Hf(u)}{u}\,\text{ d}u. \end{aligned}$$

Using these estimates and applying Hardy’s inequalities [5, pp. 240, 244], we obtain that

$$\begin{aligned} \frac{1}{p^{\prime }}||Hf||_p\le ||H^*f||_p\le p||Hf||_p\quad \text{ for} \quad 1<p<\infty \end{aligned}$$
(1.1)

(as usual, \(p^{\prime }=p/(p-1)).\)

However, the constants in (1.1) are not optimal. The objective of this paper is to find optimal constants. Our main result is the following theorem.

Theorem 1.1

Let \(f\in \mathcal M ^+(\mathbb R _+)\) and let \(1<p<\infty .\) Then,

$$\begin{aligned} (p-1)||Hf||_p \le ||H^*f||_p\le (p-1)^{1/p}||Hf||_p \end{aligned}$$
(1.2)

if \(1<p\le 2\), and

$$\begin{aligned} (p-1)^{1/p}||Hf||_p \le ||H^*f||_p\le (p-1)||Hf||_p \end{aligned}$$
(1.3)

if \(2\le p<\infty .\) All constants in (1.2) and (1.3) are the best possible.

Clearly, the problem on relationships between various norms of Hardy operator and its dual is of independent interest (cf. [4]). At the same time, this problem has an equivalent formulation in terms of the difference operator \(H\varphi -\varphi .\)

Let \(\varphi \) be a nonincreasing and nonnegative function on \(\mathbb R _+\) such that \(\varphi (+\infty )=0.\) The quantity \(H\varphi -\varphi \) plays an important role in the analysis (see [24, 6, 7] and references therein). It is well known that the norms \(||H\varphi -\varphi ||_p\) and \(||\varphi ||_p\) (\(1<p<\infty \)) are equivalent (see [1, p. 384]). However, the sharp constant is known only in the following inequality.

Let \(\varphi \) be a nonincreasing and nonnegative function on \(\mathbb R _+\). Then, for any \(p\ge 2\)

$$\begin{aligned} ||H\varphi -\varphi ||_p\le (p-1)^{-1/p}||\varphi ||_p, \end{aligned}$$
(1.4)

and the constant is optimal.

This result was obtained in [7] for \(p=2k\,\, (k\in \mathbb N )\) and in [2] for all \(p\ge 2\) (we observe that (1.4) is a special case of the inequality proved in [2] for weighted \(L^p\)-norms).

We shall show that inequality (1.4) is equivalent to the first inequality in (1.3):

$$\begin{aligned} ||Hf||_p \le (p-1)^{-1/p}||H^*f||_p, \quad 2\le p<\infty . \end{aligned}$$
(1.5)

Thus, (1.5) can be derived from (1.4). However, below we give a simple direct proof of (1.5). Moreover, Theorem 1.1 has the following equivalent form.

Theorom 1.2

Let \(\varphi \) be a nonincreasing and nonnegative function on \(\mathbb R _+\) such that \(\varphi (+\infty )=0\) and let \(1<p<\infty .\) Then,

$$\begin{aligned} (p-1)||H\varphi -\varphi ||_p \le ||\varphi ||_p\le (p-1)^{1/p}||H\varphi -\varphi ||_p \end{aligned}$$
(1.6)

if \(1<p\le 2\), and

$$\begin{aligned} (p-1)^{1/p}||H\varphi -\varphi ||_p \le ||\varphi ||_p\le (p-1)||H\varphi -\varphi ||_p \end{aligned}$$
(1.7)

if \(2\le p<\infty .\) All constants in (1.6) and (1.7) are the best possible.

2 Proofs of main results

Proof of Theorem 1.1. Taking into account (1.1), we may assume that \(Hf\) and \(H^*f\) belong to \(L^p(\mathbb R _+).\) We may also assume that \(f(x)>0\) for all \(x\in \mathbb R _+.\) Denote

$$\begin{aligned} I_p=\int \limits _0^\infty \left(\frac{1}{x}\int \limits _0^x f(t)\,\text{ d}t\right)^p\,\text{ d}x. \end{aligned}$$

Since \(Hf\in L^p(\mathbb R _+),\) we have

$$\begin{aligned} Hf(x)=o(x^{-1/p})\quad \text{ as}\quad x\rightarrow 0+\quad \text{ or}\quad x\rightarrow +\infty . \end{aligned}$$

Thus, integrating by parts, we obtain

$$\begin{aligned} I_p=p^{\prime }\int \limits _0^{\infty } x^{1-p}f(x)\left(\int \limits _0^x f(t)\,\text{ d}t\right)^{p-1}\,\text{ d}x. \end{aligned}$$
(2.1)

Further, set

$$\begin{aligned} I_p^*=\int \limits _0^\infty \left(\int \limits _t^\infty \frac{f(x)}{x}\,\text{ d}x\right)^p\,\text{ d}t. \end{aligned}$$
(2.2)

First, we shall prove that

$$\begin{aligned} (p-1)I_p\le I_p^*\quad \text{ if}\quad 2\le p<\infty \end{aligned}$$
(2.3)

and

$$\begin{aligned} I_p^*\le (p-1)I_p \quad \text{ if}\quad 1< p\le 2. \end{aligned}$$
(2.4)

Set

$$\begin{aligned} \Phi (t,x)=\int \limits _t^x\frac{f(u)}{u}\,\text{ d}u, \quad 0<t\le x, \end{aligned}$$

and \(G(t,x)= \Phi (t,x)^p.\) Since \(G(t,t)=0,\) we have

$$\begin{aligned} \left(\int \limits _t^\infty \frac{f(x)}{x}\,\text{ d}x\right)^p = \int \limits _t^\infty G_x^{\prime }(t,x)\,\text{ d}x =p \int \limits _t^\infty \frac{f(x)}{x} \Phi (t,x)^{p-1}\,\text{ d}x. \end{aligned}$$

Thus, by Fubini’s theorem,

$$\begin{aligned} I_p^*&= p\int \limits _0^\infty \int \limits _t^\infty \frac{f(x)}{x} \Phi (t,x)^{p-1}\,\text{ d}x\,\text{ d}t\nonumber \\&= p\int \limits _0^\infty \frac{f(x)}{x}\int \limits _0^x \Phi (t,x)^{p-1}\,\text{ d}t\text{ d}x. \end{aligned}$$
(2.5)

On the other hand, Fubini’s theorem gives that

$$\begin{aligned} \int \limits _0^x f(t)\,\text{ d}t=\int \limits _0^x \Phi (t,x)\,\text{ d}t. \end{aligned}$$

Hence, by (2.1),

$$\begin{aligned} I_p=p^{\prime }\int \limits _0^\infty x^{1-p}f(x)\left(\int \limits _0^x \Phi (t,x)\,\text{ d}t\right)^{p-1}\,\text{ d}x. \end{aligned}$$
(2.6)

Comparing (2.1) with (2.2), we see that \(I_2=I_2^*.\) In what follows, we assume that \(p\not =2.\)

Let \(p>2.\) Then, by Hölder’s inequality

$$\begin{aligned} \left(\int \limits _0^x \Phi (t,x)\,\text{ d}t\right)^{p-1}\le x^{p-2}\int \limits _0^x \Phi (t,x)^{p-1}\,\text{ d}t. \end{aligned}$$

Thus, by (2.5) and (2.6),

$$\begin{aligned} I_p\le p^{\prime }\int \limits _0^\infty \frac{f(x)}{x}\int \limits _0^x \Phi (t,x)^{p-1}\,\text{ d}t\text{ d}x=\frac{I^*_p}{p-1}, \end{aligned}$$

and we obtain (2.3).

Let now \(1<p< 2.\) Applying Hölder’s inequality, we get

$$\begin{aligned} \int \limits _0^x \Phi (t,x)^{p-1}\,\text{ d}t\le x^{2-p}\left(\int \limits _0^x \Phi (t,x)\,\text{ d}t\right)^{p-1}. \end{aligned}$$

Thus, by (2.5) and (2.6),

$$\begin{aligned} I_p^*\le p\int \limits _0^\infty x^{1-p}f(x)\left(\int \limits _0^x \Phi (t,x)\,\text{ d}t\right)^{p-1}\,\text{ d}x=(p-1)I_p, \end{aligned}$$

and we obtain (2.4).

Inequalities (2.3) and (2.4) imply the first inequality in (1.3) and the second inequality in (1.2), respectively.

Now, we shall show that

$$\begin{aligned} I_p^*\le (p-1)^pI_p\quad \text{ if}\quad 2< p<\infty \end{aligned}$$
(2.7)

and

$$\begin{aligned} (p-1)^pI_p\le I_p^* \quad \text{ if}\quad 1< p<2. \end{aligned}$$
(2.8)

Observe that by our assumption (\(f>0\) and \(H^*f\in L^p(\mathbb R _+))\),

$$\begin{aligned} 0<\int \limits _t^\infty \frac{f(x)}{x}\,\text{ d}x <\infty \quad \text{ for} \text{ all} \quad t>0. \end{aligned}$$

Thus, for any \(q>0\), we have

$$\begin{aligned} \left(\int \limits _t^\infty \frac{f(x)}{x}\,\text{ d}x\right)^q=q\int \limits _t^\infty \frac{f(x)}{x}\left(\int \limits _x^\infty \frac{f(u)}{u}\,\text{ d}u\right)^{q-1}\,\text{ d}x. \end{aligned}$$
(2.9)

Applying this equality with \(q=p\) in (2.2) and using Fubini’s theorem, we obtain

$$\begin{aligned} I_p^*=p\int \limits _0^\infty f(x)\left(\int \limits _x^\infty \frac{f(u)}{u}\,\text{ d}u\right)^{p-1}\,\text{ d}x. \end{aligned}$$
(2.10)

Further, apply (2.9) for \(q=p-1\) and use again Fubini’s theorem. This gives

$$\begin{aligned} I_p^*&= p(p-1)\int \limits _0^\infty f(x)\int \limits _x^\infty \frac{f(u)}{u}\left(\int \limits _u^\infty \frac{f(v)}{v}\,\text{ d}v\right)^{p-2}\,\text{ d}u\,\text{ d}x\\&= p(p-1)\int \limits _0^\infty \frac{f(u)}{u}\left(\int \limits _u^\infty \frac{f(v)}{v}\,\text{ d}v\right)^{p-2}\int \limits _0^u f(x)\,\text{ d}x\,\text{ d}u. \end{aligned}$$

Set

$$\begin{aligned} \varphi (u)=\frac{f(u)^{1/(p-1)}}{u}\int \limits _0^u f(x)\,\text{ d}x \end{aligned}$$

and

$$\begin{aligned} \psi (u)=f(u)^{(p-2)/(p-1)}\left(\int \limits _u^\infty \frac{f(x)}{x}\,\text{ d}x\right)^{p-2} \end{aligned}$$

(recall that \(f>0\)). Then, we have

$$\begin{aligned} I_p^*=p(p-1)\int \limits _0^\infty \varphi (u)\psi (u)\,\text{ d}u. \end{aligned}$$
(2.11)

Furthermore, by (2.1),

$$\begin{aligned} \int \limits _0^\infty \varphi (u)^{p-1}\,\text{ d}u=\int \limits _0^\infty \frac{f(u)}{u^{p-1}}\left(\int \limits _0^u f(x)\,\text{ d}x\right)^{p-1}\,\text{ d}u= \frac{I_p}{p^{\prime }}, \end{aligned}$$
(2.12)

and by (2.10),

$$\begin{aligned} \int \limits _0^\infty \psi (u)^{(p-1)/(p-2)}\,\text{ d}u= \int \limits _0^\infty f(u)\left(\int \limits _u^\infty \frac{f(x)}{x}\,\text{ d}x\right)^{p-1}\,\text{ d}u=\frac{I_p^*}{p} \end{aligned}$$
(2.13)

for any \(p>1, \, p\not =2.\)

Let \(p>2.\) Applying in (2.11) Hölder’s inequality with the exponent \(p-1\) and taking into account equalities (2.12) and (2.13), we obtain

$$\begin{aligned} I_p^*\le p(p-1)\left(\frac{I_p}{p^{\prime }}\right)^{1/(p-1)}\left(\frac{I_p^*}{p}\right)^{(p-2)/(p-1)}. \end{aligned}$$

This implies (2.7), which is the second inequality in (1.3).

Let now \(1< p<2.\) Applying in (2.11) Hölder’s inequality with the exponent \(p-1\in (0,1)\) (see [5, p. 140]), and using equalities (2.12) and (2.13), we get

$$\begin{aligned} I_p^*\ge p(p-1)\left(\frac{I_p}{p^{\prime }}\right)^{1/(p-1)}\left(\frac{I_p^*}{p}\right)^{(p-2)/(p-1)}. \end{aligned}$$

Thus,

$$\begin{aligned} (I_p^*)^{1/(p-1)}\ge (p-1)^{p/(p-1)}I_p^{1/(p-1)}. \end{aligned}$$

This implies (2.8), which is the first inequality in (1.2).

It remains to show that the constants in (1.2) and (1.3) are optimal. First, set \(f_\varepsilon (x)=\chi _{[1,1+\varepsilon ]}(x)\,\, (\varepsilon >0).\) Then,

$$\begin{aligned} ||Hf_\varepsilon ||_p^p =\int \limits _1^{1+\varepsilon } x^{-p}(x-1)^p\,\text{ d}x + \varepsilon ^p\int \limits _{1+\varepsilon }^\infty x^{-p}\,\text{ d}x. \end{aligned}$$

Thus,

$$\begin{aligned} \frac{\varepsilon ^p(1+\varepsilon )^{1-p}}{p-1}\le ||Hf_\varepsilon ||_p^p\le \frac{\varepsilon ^p(1+\varepsilon )^{1-p}}{p-1} +\varepsilon ^{p+1}. \end{aligned}$$

Further,

$$\begin{aligned} ||H^*f_\varepsilon ||_p^p&= \int \limits _0^1\left(\int \limits _1^{1+\varepsilon }\frac{\text{ d}t}{t}\right)^p\,\text{ d}x +\int \limits _1^{1+\varepsilon }\left(\int \limits _x^{1+\varepsilon }\frac{\text{ d}t}{t}\right)^p\,\text{ d}x\\&= (\ln (1+\varepsilon ))^p+\int \limits _1^{1+\varepsilon }\left(\ln \frac{1+\varepsilon }{x}\right)^p\,\text{ d}x. \end{aligned}$$

Thus,

$$\begin{aligned} (\ln (1+\varepsilon ))^p\le ||H^*f_\varepsilon ||_p^p\le (\ln (1+\varepsilon ))^p(1 +\varepsilon ). \end{aligned}$$

Using these estimates, we obtain that

$$\begin{aligned} \lim _{\varepsilon \rightarrow 0+}\frac{||Hf_\varepsilon ||_p}{||H^*f_\varepsilon ||_p}=(p-1)^{-1/p}. \end{aligned}$$

It follows that the constants in the right-hand side of (1.2) and the left-hand side of (1.3) cannot be improved.

Let \(1<p<2.\) Set \(f_\varepsilon (x)=x^{\varepsilon -1/p}\chi _{[0,1]}(x)\,\, (0<\varepsilon <1/p).\) Then,

$$\begin{aligned} ||Hf_\varepsilon ||_p^p\ge \int \limits _0^1\left(\frac{1}{x}\int \limits _0^x t^{\varepsilon -1/p}\,\text{ d}t\right)^p\,\text{ d}x=\frac{p^p}{\varepsilon p(p-1+\varepsilon p)^p}. \end{aligned}$$

On the other hand,

$$\begin{aligned} ||H^*f_\varepsilon ||_p^p\le \left(\frac{1}{p}-\varepsilon \right)^{-p}\int \limits _0^1 x^{(\varepsilon -1/p)p}\,\text{ d}x=\frac{p^p}{\varepsilon p(1-\varepsilon p)^p}. \end{aligned}$$

Hence,

$$\begin{aligned} \mathop {\underline{\text{ lim}}}\limits _{\varepsilon \rightarrow 0+}\frac{||Hf_\varepsilon ||_p}{||H^*f_\varepsilon ||_p}\ge \frac{1}{p-1}. \end{aligned}$$

This implies that the constant in the left-hand side of (1.2) is optimal.

Let now \(p>2.\) Set \(f_\varepsilon (x)=x^{-\varepsilon -1/p}\chi _{[1,+\infty )}(x)\,\, (0<\varepsilon <1/p^{\prime }).\) Then

$$\begin{aligned} ||H^*f_\varepsilon ||_p^p\ge \int \limits _1^\infty \left(\int \limits _x^\infty \frac{\text{ d}t}{t^{1+1/p+\varepsilon }}\right)^p\,\text{ d}x=\frac{p^p}{\varepsilon p(1+\varepsilon p)^p} \end{aligned}$$

and

$$\begin{aligned} ||Hf_\varepsilon ||_p^p\le \int \limits _1^\infty \left(\frac{1}{x}\int \limits _0^x\frac{\text{ d}t}{t^{1/p+\varepsilon }}\right)^p\,\text{ d}x=\frac{p^p}{\varepsilon p(p-1-\varepsilon p)^p}. \end{aligned}$$

Thus,

$$\begin{aligned} \mathop {\underline{\text{ lim}}}\limits _{\varepsilon \rightarrow 0+}\frac{||H^*f_\varepsilon ||_p}{||Hf_\varepsilon ||_p}\ge p-1. \end{aligned}$$

This shows that the constant in the right-hand side of (1.3) is the best possible. The proof is completed.

Remark 2.1

We emphasize that in Theorem 1.1, we do not assume that \(f\) belongs to \(L^p(\mathbb R _+).\) It is clear that the condition \(Hf\in L^p(\mathbb R _+)\) does not imply that \(f\in L^p(\mathbb R _+).\) For example, let \(f(x)=|x-1|^{-1/p}\chi _{[1,2]}(x),\,p>1.\) Then,

$$\begin{aligned} Hf(x)=0\quad \text{ for}\quad x\in [0,1]\quad \text{ and}\quad Hf(x)\le \frac{p^{\prime }}{x}\quad \text{ for}\quad x\ge 1. \end{aligned}$$

Thus, \(Hf\in L^p(\mathbb R _+)\), but \(f\not \in L^p(\mathbb R _+).\)

Now, we shall show that Theorems 1.1 and 1.2 are equivalent. First, we observe that without the loss of generality, we may assume that a function \(\varphi \) in Theorem 1.2 is locally absolutely continuous on \(\mathbb R _+.\) Indeed, let \(\varphi \) be a nonincreasing and nonnegative function on \(\mathbb R _+\) such that \(\varphi (+\infty )=0.\) Set

$$\begin{aligned} \varphi _n(x)=n\int \limits _x^{x+1/n} \varphi (t)\,\text{ d}t \quad (n\in \mathbb N ). \end{aligned}$$

Then, functions \(\varphi _n\) are nonincreasing, nonnegative, and locally absolutely continuous on \(\mathbb R _+.\) Besides, the sequence \(\{\varphi _n(x)\}\) increases for any \(x\in \mathbb R _+\) and converges to \(\varphi (x)\) at every point of continuity of \(\varphi .\) By the monotone convergence theorem, \(H\varphi _n(x)\rightarrow H\varphi (x)\) as \( n\rightarrow \infty \) for any \(x\in \mathbb R _+\), and \(||\varphi _n||_p\rightarrow ||\varphi ||_p.\) Furthermore, in Theorem 1.2, we may assume that \(\varphi \in L^p(\mathbb R _+)\) (in conditions of this theorem, the norms \(||H\varphi -\varphi ||_p\) and \(||\varphi ||_p\) are equivalent [1, p. 384]). Using this assumption, Hardy’s inequality, and the dominated convergence theorem, we obtain that \(||H\varphi _n-\varphi _n||_p\rightarrow ||H\varphi -\varphi ||_p\).

Let \(\varphi \) be a nonincreasing, nonnegative, and locally absolutely continuous function on \(\mathbb R _+\) such that \(\varphi (+\infty )=0.\) Then,

$$\begin{aligned} H\varphi (x)-\varphi (x)&= \frac{1}{x}\int \limits _0^x[\varphi (t)-\varphi (x)]\,\text{ d}t\\&= \frac{1}{x}\int \limits _0^x\int \limits _t^x|\varphi ^{\prime }(u)|\,\text{ d}u\text{ d}t=\frac{1}{x}\int \limits _0^x u|\varphi ^{\prime }(u)|\,\text{ d}u. \end{aligned}$$

Set \(u|\varphi ^{\prime }(u)|=f(u).\) Since \(\varphi (+\infty )=0,\) we have

$$\begin{aligned} \varphi (x)=\int \limits _x^\infty |\varphi ^{\prime }(u)|\,\text{ d}u=\int \limits _x^\infty \frac{f(u)}{u}\,\text{ d}u. \end{aligned}$$

Thus,

$$\begin{aligned} H\varphi (x)-\varphi (x)=\frac{1}{x}\int \limits _0^x f(u)\,\text{ d}u = Hf(x) \end{aligned}$$
(2.14)

and

$$\begin{aligned} \varphi (x)=\int \limits _x^\infty \frac{f(u)}{u}\,\text{ d}u=H^*f(x). \end{aligned}$$
(2.15)

Conversely, if \(f\in \mathcal M ^+(\mathbb R _+)\) and

$$\begin{aligned} \int \limits _0^x f(u)\,\text{ d}u<\infty \quad \text{ for} \text{ any}\quad x>0, \end{aligned}$$

we define \(\varphi \) by (2.15) and then we have equality (2.14). These arguments show the equivalence of Theorems 1.1 and 1.2.