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Abstract We obtain sharp two-sided inequalities between L”-norms (I < p < 00) of
functions Hf and H* f, where H is the Hardy operator, H* is its dual, and f is a nonnegative
measurable function on (0, c0). In an equivalent form, it gives sharp constants in the two-
sided relationships between L?-norms of functions H¢ — ¢ and ¢, where ¢ is a nonnegative
nonincreasing function on (0, +00) with ¢(+00) = 0. In particular, it provides an alternative
proof of a result obtained by Kruglyak and Setterqvist (Proc Am Math Soc 136:2005-2013,
2008) for p = 2k (k € N) and by Boza and Soria (J Funct Anal 260:1020-1028, 2011) for
all p > 2, and gives a sharp version of this result for 1 < p < 2.
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1 Introduction and main results

Denote by M (R_) the class of all nonnegative measurable functions on Ry = (0, +00).
Let f € MT(R,). Set

1 X
Hf() = - / F0)di
0

and

H* f(x) = @dr.

X
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These equalities define the classical Hardy operator H and its dual operator H*. By Hardy’s
inequalities [5, Ch. 9], these operators are bounded in L? (R ) forany 1 < p < co. Further-
more, it is easy to show that for any f € M*T(R;) and any 1 < p < oo, the L”-norms of
Hf and H* f are equivalent. Indeed, let f € M*(R.). By Fubini’s theorem,

X 1 X
dt/ F@W g <! / H* £ (1) dr.

X
t 0

X

1
Hf(x):;/

0

u

On the other hand, Fubini’s theorem gives that
o0 d u 0] H
H* f(x) =/—”2‘/f(r)dt S/ﬂdu.
u u
X X X
Using these estimates and applying Hardy’s inequalities [5, pp. 240, 244], we obtain that
1
?HHf”pSHH*f“pprHf”p for 1 <p<oo (1.1)

(asusual, p’ = p/(p — 1)).
However, the constants in (1.1) are not optimal. The objective of this paper is to find
optimal constants. Our main result is the following theorem.

Theorem 1.1 Let f € MT(Ry) andlet 1 < p < oo. Then,
(p = DIHFfI, < 1H*fll, < (p — DYPIHFI|, (1.2)
ifl < p<2 and

(p = DYPIHSIlp < 1H* fllp < (p = DIHS Il (1.3)
if2 < p < 0o. All constants in (1.2) and (1.3) are the best possible.

Clearly, the problem on relationships between various norms of Hardy operator and its
dual is of independent interest (cf. [4]). At the same time, this problem has an equivalent
formulation in terms of the difference operator Hp — ¢.

Let ¢ be a nonincreasing and nonnegative function on Ry such that ¢(400) = 0. The
quantity H ¢ —¢ plays an important role in the analysis (see [2—4,6,7] and references therein).
It is well known that the norms ||H¢ — ¢||, and |||, (1 < p < 00) are equivalent (see [1,
p- 384]). However, the sharp constant is known only in the following inequality.

Let ¢ be a nonincreasing and nonnegative function on R, . Then, for any p > 2

1He —¢ll, < (p — D™VP gl (1.4)

and the constant is optimal.

This result was obtained in [7] for p = 2k (k € N) and in [2] for all p > 2 (we observe
that (1.4) is a special case of the inequality proved in [2] for weighted L?-norms).

We shall show that inequality (1.4) is equivalent to the first inequality in (1.3):

Hfllp < (p=DTVPUH*fIl,, 2<p < o0 (1.5)

Thus, (1.5) can be derived from (1.4). However, below we give a simple direct proof of (1.5).
Moreover, Theorem 1.1 has the following equivalent form.
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Theorem 1.2 Let ¢ be a nonincreasing and nonnegative function on R such that ¢ (+00) =
Oandlet 1 < p < oo. Then,

(p—DIHg —¢ll, < llell, < (p— DVP||Hp — ¢, (1.6)
ifl < p<2and
(p—DYPIIHe —oll, < llgllp < (p — DIHe — ¢l (1.7)

if2 < p < 0o. All constants in (1.6) and (1.7) are the best possible.

2 Proofs of main results

Proof of Theorem 1.1. Taking into account (1.1), we may assume that Hf and H* f belong
to L”(R4). We may also assume that f(x) > 0 for all x € Ry. Denote

p

1,,:/ %/f(t)dt dx.

0 0
Since Hf € L”(R), we have

Hf(x) =o(x"YP) as x >0+ or x — +00.

Thus, integrating by parts, we obtain

p—1

[o¢] X
I, = p’/xl—f’f(x) /f(z)dt dx. Q2.1)
0 0
Further, set
00 00 P
I = / / LA S 22)
X
0 t
First, we shall prove that
(p—l)],,gllf if 2<p<oo (2.3)
and
Iy<(p—=Dl, if 1<p=<2. (2.4)
Set

u

@(r,x):/f(”)du, 0<1<n,
t

and G(t, x) = ® (¢, x)”. Since G(¢,t) = 0, we have
p

/f(x)dx :/G;(t,x)dx:p @cb(r,x)f’*ldx.
t

X

t t

Thus, by Fubini’s theorem,
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oo o0
/ / ,x)P~ldx dt
0 t
o0 X
/ / @ (t, x)P~ ! drdx. (2.5)

0

On the other hand, Fubini’s theorem gives that

/f(z)dt:/@(t,x)dt.
0 0

Hence, by (2.1),

00 X p=l
I, = ’/xl_Pf(x) /q>(t,x)dt dx. (2.6)
0 0

Comparing (2.1) with (2.2), we see that I, = I. In what follows, we assume that p # 2.
Let p > 2. Then, by Holder’s inequality

x p—1 x
/dD(t,x)dt Sxp_z/QD(t,x)p_ldt.
0 0

Thus, by (2.5) and (2.6),

X
*

o0
I
g p,/ f@) /w’x)p_] drdr =
X p—1
0 0
and we obtain (2.3).

Letnow 1 < p < 2. Applying Holder’s inequality, we get

X x p—1

/ &, x)P"dr < x>7P / O (t, x) dt
0 0
Thus, by (2.5) and (2.6),

o0 X p—1
I < p/xl“’f(x) /qm,x)dr dx = (p— DI,
0 0

and we obtain (2.4).

Inequalities (2.3) and (2.4) imply the first inequality in (1.3) and the second inequality in
(1.2), respectively.

Now, we shall show that

I;s(p—l)plp if 2<p<oo 2.7)
and
(p—=DPI, <1, if 1<p<2. (2.8)
Observe that by our assumption (f > 0 and H* f € L”(Ry)),
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00
/ SACY dx < oo forall ¢ > 0.
Thus, for any ¢ > 0, we have
00 0 g-1
f(X) / f ) S ) d dr. 2.9)
u
Applying this equahty with ¢ = p in (2.2) and using Fubini’s theorem, we obtain
0 p—1
I;,‘ = p/f(x) &d dx. (2.10)
0 X
Further, apply (2.9) for ¢ = p — 1 and use again Fubini’s theorem. This gives
00 o 0 p=2
I = p(p— 1)/f(x)/ fi“) ff)”) d)  dudr
0 X u
) ) P=2 y
= p(p— 1)/ AON RO /f(x)dxdu.
0 ! u Y 0
Set
Fu)l/P=D ;
pu) = f/f(X)dx
0
and
o0 p—2
V) = f(u)(P*Z)/(P*U /@dx
X
(recall that f > 0). Then, we have
== [ ey d. @11)
0
Furthermore, by (2.1),
00 u r—1
/(p(u)” Ydu = / (u) /f(x)dx du = I—’j, (2.12)
0 0 0
and by (2.10),
o0 o0 o0 B *
/w(u)@—”/(!’—” du = / ) / @ dx du = %” (2.13)
0 0 u

forany p > 1, p # 2.
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Let p > 2. Applying in (2.11) Holder’s inequality with the exponent p — 1 and taking
into account equalities (2.12) and (2.13), we obtain

1, 1/(p=D I (p=2)/(p=1)
I* < p(p—1) (—) (7) .
r r

This implies (2.7), which is the second inequality in (1.3).
Letnow 1 < p < 2. Applying in (2.11) Holder’s inequality with the exponent p — 1 €
(0, 1) (see [3, p. 140]), and using equalities (2.12) and (2.13), we get

I, 1/(p=1 I (p=2)/(p=1)
I > p(p—1) (—) (7) .
r p

Thus,
- —1) ,1/(p—1
(];)1/(1’ D > (p— I)P/(P l)Ip/(l’ ).
This implies (2.8), which is the first inequality in (1.2).

It remains to show that the constants in (1.2) and (1.3) are optimal. First, set f.(x) =
X[1.14+¢](x) (¢ > 0). Then,

I+e o0
||Hf£||£ = / xP(x—=DPdx + &P / x Pdx.
1 1+e

Thus,
p l-p 4 1-p
% < ||Hf£||§ < % +8P+1_
Further,
1 1+ p I+e / 1+¢ I3
%P dr dr
||H f8||p= 7 dx + 7 dx
0 1 1 X
1+ 1 »
=(1n(1+8))p+/(ln +‘9) dx.
X
1
Thus,

(In(1 4+ &)? < ||H* fe]l5 < (n(1 + &)’ (1 + ).
Using these estimates, we obtain that

H
i ML
e—>0+ ||H*fa||p

It follows that the constants in the right-hand side of (1.2) and the left-hand side of (1.3)
cannot be improved.
Letl < p <2.8Set fe(x) = xg_l/”x[o,l](x) (0 <& < 1/p). Then,

1 X P

1 P
||Hf€||§z/ f/t“l/”dt =P
" xo ep(p—1+ep)P
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On the other hand,

1
1 P P
||H*f£||gf(7_8) /x(E—l/P)de= 14 .
p J ep(l —ep)P

Hence,

lim [1H fellp . 1 .
5—>0+||H*fs||p p—1
This implies that the constant in the left-hand side of (1.2) is optimal.
Let now p > 2. Set fq(x) = x_‘?_l/p)([l,+oo)(x) (0 <& <1/p'). Then

sz [ [ e ) = ot
1\
and
Tltoa \ pr
gl < [ (5 ) 4= oot
1 0
Thus,
WH fellp oy

m =
e—>0+ ||Hf6||]7

This shows that the constant in the right-hand side of (1.3) is the best possible. The proof is
completed.

Remark 2.1 We emphasize thatin Theorem 1.1, we do not assume that f belongs to L” (R.).
It is clear that the condition Hf € L”(Ry) does not imply that f € L”(R.). For example,
let f(x) = |x — 1|7/ x1.2)(x), p > 1. Then,

/

Hf(x)=0 for x €[0,1] and Hf(x) <2 for x> L.
X

Thus, Hf € LP(Ry), but f & LP(Ry).

Now, we shall show that Theorems 1.1 and 1.2 are equivalent. First, we observe that
without the loss of generality, we may assume that a function ¢ in Theorem 1.2 is locally
absolutely continuous on R, . Indeed, let ¢ be a nonincreasing and nonnegative function on
R+ such that ¢(400) = 0. Set

x+1/n

on(x) =n / p(t)dt (n €N).

X

Then, functions ¢, are nonincreasing, nonnegative, and locally absolutely continuous on
R . Besides, the sequence {¢, (x)} increases for any x € R and converges to ¢(x) at every
point of continuity of ¢. By the monotone convergence theorem, Hy,(x) — Hep(x) as
n — oo for any x € Ry, and [|g,||, — Il¢l|,. Furthermore, in Theorem 1.2, we may
assume that ¢ € L”(R,) (in conditions of this theorem, the norms ||H¢ — ¢||, and ||¢||,
are equivalent [1, p. 384]). Using this assumption, Hardy’s inequality, and the dominated
convergence theorem, we obtain that ||[He, — ¢ullp — [|[He — ¢ll).
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Let ¢ be a nonincreasing, nonnegative, and locally absolutely continuous function on R

such that ¢(4-00) = 0. Then,

Ho(x) —¢(x)

1 X
f/[so(t) —o(x)]dt
X

0

X

X X
1 , 1 ,
~ lo" ()| dudt = — [ ule’(u)| du.
X X
0t 0

Set ulg’ ()| = f(u). Since ¢ (+00) = 0, we have

o) = / /)] du = / O

u
Thus,
] X
Ho@) — p(0) = / F)du = Hf(x) 2.14)
0
and
o(x) :/ f;”) du = H* f(x). (2.15)

Conversely, if f € MT(R,) and

X
/f(u)du<oo forany x > 0,
0

we define ¢ by (2.15) and then we have equality (2.14). These arguments show the equivalence
of Theorems 1.1 and 1.2.
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