Optimal relationships between L^{p}-norms for the Hardy operator and its dual

V. I. Kolyada

Received: 8 June 2012 / Accepted: 6 August 2012 / Published online: 23 August 2012
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2012

Abstract

We obtain sharp two-sided inequalities between L^{p}-norms $(1<p<\infty)$ of functions $H f$ and $H^{*} f$, where H is the Hardy operator, H^{*} is its dual, and f is a nonnegative measurable function on $(0, \infty)$. In an equivalent form, it gives sharp constants in the twosided relationships between L^{p}-norms of functions $H \varphi-\varphi$ and φ, where φ is a nonnegative nonincreasing function on $(0,+\infty)$ with $\varphi(+\infty)=0$. In particular, it provides an alternative proof of a result obtained by Kruglyak and Setterqvist (Proc Am Math Soc 136:2005-2013, 2008) for $p=2 k(k \in \mathbb{N})$ and by Boza and Soria (J Funct Anal 260:1020-1028, 2011) for all $p \geq 2$, and gives a sharp version of this result for $1<p<2$.

Keywords Hardy operator • Dual operator • Best constants
Mathematics Subject Classification (2010) Primary 26D10, 26D15; Secondary 46E30

1 Introduction and main results

Denote by $\mathcal{M}^{+}\left(\mathbb{R}_{+}\right)$the class of all nonnegative measurable functions on $\mathbb{R}_{+} \equiv(0,+\infty)$. Let $f \in \mathcal{M}^{+}\left(\mathbb{R}_{+}\right)$. Set

$$
H f(x)=\frac{1}{x} \int_{0}^{x} f(t) \mathrm{d} t
$$

and

$$
H^{*} f(x)=\int_{x}^{\infty} \frac{f(t)}{t} \mathrm{~d} t
$$

[^0]These equalities define the classical Hardy operator H and its dual operator H^{*}. By Hardy's inequalities [5, Ch. 9], these operators are bounded in $L^{p}\left(\mathbb{R}_{+}\right)$for any $1<p<\infty$. Furthermore, it is easy to show that for any $f \in \mathcal{M}^{+}\left(\mathbb{R}_{+}\right)$and any $1<p<\infty$, the L^{p}-norms of $H f$ and $H^{*} f$ are equivalent. Indeed, let $f \in \mathcal{M}^{+}\left(\mathbb{R}_{+}\right)$. By Fubini's theorem,

$$
H f(x)=\frac{1}{x} \int_{0}^{x} \mathrm{~d} t \int_{t}^{x} \frac{f(u)}{u} \mathrm{~d} u \leq \frac{1}{x} \int_{0}^{x} H^{*} f(t) \mathrm{d} t
$$

On the other hand, Fubini's theorem gives that

$$
H^{*} f(x)=\int_{x}^{\infty} \frac{\mathrm{d} u}{u^{2}} \int_{x}^{u} f(t) \mathrm{d} t \leq \int_{x}^{\infty} \frac{H f(u)}{u} \mathrm{~d} u
$$

Using these estimates and applying Hardy's inequalities [5, pp. 240, 244], we obtain that

$$
\begin{equation*}
\frac{1}{p^{\prime}}\|H f\|_{p} \leq\left\|H^{*} f\right\|_{p} \leq p\|H f\|_{p} \text { for } 1<p<\infty \tag{1.1}
\end{equation*}
$$

(as usual, $p^{\prime}=p /(p-1)$).
However, the constants in (1.1) are not optimal. The objective of this paper is to find optimal constants. Our main result is the following theorem.

Theorem 1.1 Let $f \in \mathcal{M}^{+}\left(\mathbb{R}_{+}\right)$and let $1<p<\infty$. Then,

$$
\begin{equation*}
(p-1)\|H f\|_{p} \leq\left\|H^{*} f\right\|_{p} \leq(p-1)^{1 / p}\|H f\|_{p} \tag{1.2}
\end{equation*}
$$

if $1<p \leq 2$, and

$$
\begin{equation*}
(p-1)^{1 / p}\|H f\|_{p} \leq\left\|H^{*} f\right\|_{p} \leq(p-1)\|H f\|_{p} \tag{1.3}
\end{equation*}
$$

if $2 \leq p<\infty$. All constants in (1.2) and (1.3) are the best possible.
Clearly, the problem on relationships between various norms of Hardy operator and its dual is of independent interest (cf. [4]). At the same time, this problem has an equivalent formulation in terms of the difference operator $H \varphi-\varphi$.

Let φ be a nonincreasing and nonnegative function on \mathbb{R}_{+}such that $\varphi(+\infty)=0$. The quantity $H \varphi-\varphi$ plays an important role in the analysis (see [2-4,6,7] and references therein). It is well known that the norms $\|H \varphi-\varphi\|_{p}$ and $\|\varphi\|_{p}(1<p<\infty)$ are equivalent (see [1, p. 384]). However, the sharp constant is known only in the following inequality.

Let φ be a nonincreasing and nonnegative function on \mathbb{R}_{+}. Then, for any $p \geq 2$

$$
\begin{equation*}
\|H \varphi-\varphi\|_{p} \leq(p-1)^{-1 / p}\|\varphi\|_{p} \tag{1.4}
\end{equation*}
$$

and the constant is optimal.
This result was obtained in [7] for $p=2 k(k \in \mathbb{N}$) and in [2] for all $p \geq 2$ (we observe that (1.4) is a special case of the inequality proved in [2] for weighted L^{p}-norms).

We shall show that inequality (1.4) is equivalent to the first inequality in (1.3):

$$
\begin{equation*}
\|H f\|_{p} \leq(p-1)^{-1 / p}\left\|H^{*} f\right\|_{p}, \quad 2 \leq p<\infty \tag{1.5}
\end{equation*}
$$

Thus, (1.5) can be derived from (1.4). However, below we give a simple direct proof of (1.5). Moreover, Theorem 1.1 has the following equivalent form.

Theorem 1.2 Let φ be a nonincreasing and nonnegative function on \mathbb{R}_{+}such that $\varphi(+\infty)=$ 0 and let $1<p<\infty$. Then,

$$
\begin{equation*}
(p-1)\|H \varphi-\varphi\|_{p} \leq\|\varphi\|_{p} \leq(p-1)^{1 / p}\|H \varphi-\varphi\|_{p} \tag{1.6}
\end{equation*}
$$

if $1<p \leq 2$, and

$$
\begin{equation*}
(p-1)^{1 / p}\|H \varphi-\varphi\|_{p} \leq\|\varphi\|_{p} \leq(p-1)\|H \varphi-\varphi\|_{p} \tag{1.7}
\end{equation*}
$$

if $2 \leq p<\infty$. All constants in (1.6) and (1.7) are the best possible.

2 Proofs of main results

Proof of Theorem 1.1. Taking into account (1.1), we may assume that $H f$ and $H^{*} f$ belong to $L^{p}\left(\mathbb{R}_{+}\right)$. We may also assume that $f(x)>0$ for all $x \in \mathbb{R}_{+}$. Denote

$$
I_{p}=\int_{0}^{\infty}\left(\frac{1}{x} \int_{0}^{x} f(t) \mathrm{d} t\right)^{p} \mathrm{~d} x
$$

Since $H f \in L^{p}\left(\mathbb{R}_{+}\right)$, we have

$$
H f(x)=o\left(x^{-1 / p}\right) \text { as } \quad x \rightarrow 0+\quad \text { or } \quad x \rightarrow+\infty .
$$

Thus, integrating by parts, we obtain

$$
\begin{equation*}
I_{p}=p^{\prime} \int_{0}^{\infty} x^{1-p} f(x)\left(\int_{0}^{x} f(t) \mathrm{d} t\right)^{p-1} \mathrm{~d} x . \tag{2.1}
\end{equation*}
$$

Further, set

$$
\begin{equation*}
I_{p}^{*}=\int_{0}^{\infty}\left(\int_{t}^{\infty} \frac{f(x)}{x} \mathrm{~d} x\right)^{p} \mathrm{~d} t \tag{2.2}
\end{equation*}
$$

First, we shall prove that

$$
\begin{equation*}
(p-1) I_{p} \leq I_{p}^{*} \quad \text { if } \quad 2 \leq p<\infty \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{p}^{*} \leq(p-1) I_{p} \quad \text { if } \quad 1<p \leq 2 \tag{2.4}
\end{equation*}
$$

Set

$$
\Phi(t, x)=\int_{t}^{x} \frac{f(u)}{u} \mathrm{~d} u, \quad 0<t \leq x,
$$

and $G(t, x)=\Phi(t, x)^{p}$. Since $G(t, t)=0$, we have

$$
\left(\int_{t}^{\infty} \frac{f(x)}{x} \mathrm{~d} x\right)^{p}=\int_{t}^{\infty} G_{x}^{\prime}(t, x) \mathrm{d} x=p \int_{t}^{\infty} \frac{f(x)}{x} \Phi(t, x)^{p-1} \mathrm{~d} x .
$$

Thus, by Fubini's theorem,

$$
\begin{align*}
I_{p}^{*} & =p \int_{0}^{\infty} \int_{t}^{\infty} \frac{f(x)}{x} \Phi(t, x)^{p-1} \mathrm{~d} x \mathrm{~d} t \\
& =p \int_{0}^{\infty} \frac{f(x)}{x} \int_{0}^{x} \Phi(t, x)^{p-1} \mathrm{~d} t \mathrm{~d} x . \tag{2.5}
\end{align*}
$$

On the other hand, Fubini's theorem gives that

$$
\int_{0}^{x} f(t) \mathrm{d} t=\int_{0}^{x} \Phi(t, x) \mathrm{d} t
$$

Hence, by (2.1),

$$
\begin{equation*}
I_{p}=p^{\prime} \int_{0}^{\infty} x^{1-p} f(x)\left(\int_{0}^{x} \Phi(t, x) \mathrm{d} t\right)^{p-1} \mathrm{~d} x \tag{2.6}
\end{equation*}
$$

Comparing (2.1) with (2.2), we see that $I_{2}=I_{2}^{*}$. In what follows, we assume that $p \neq 2$.
Let $p>2$. Then, by Hölder's inequality

$$
\left(\int_{0}^{x} \Phi(t, x) \mathrm{d} t\right)^{p-1} \leq x^{p-2} \int_{0}^{x} \Phi(t, x)^{p-1} \mathrm{~d} t
$$

Thus, by (2.5) and (2.6),

$$
I_{p} \leq p^{\prime} \int_{0}^{\infty} \frac{f(x)}{x} \int_{0}^{x} \Phi(t, x)^{p-1} \mathrm{~d} t \mathrm{~d} x=\frac{I_{p}^{*}}{p-1},
$$

and we obtain (2.3).
Let now $1<p<2$. Applying Hölder's inequality, we get

$$
\int_{0}^{x} \Phi(t, x)^{p-1} \mathrm{~d} t \leq x^{2-p}\left(\int_{0}^{x} \Phi(t, x) \mathrm{d} t\right)^{p-1}
$$

Thus, by (2.5) and (2.6),

$$
I_{p}^{*} \leq p \int_{0}^{\infty} x^{1-p} f(x)\left(\int_{0}^{x} \Phi(t, x) \mathrm{d} t\right)^{p-1} \mathrm{~d} x=(p-1) I_{p}
$$

and we obtain (2.4).
Inequalities (2.3) and (2.4) imply the first inequality in (1.3) and the second inequality in (1.2), respectively.

Now, we shall show that

$$
\begin{equation*}
I_{p}^{*} \leq(p-1)^{p} I_{p} \quad \text { if } \quad 2<p<\infty \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
(p-1)^{p} I_{p} \leq I_{p}^{*} \quad \text { if } \quad 1<p<2 \tag{2.8}
\end{equation*}
$$

Observe that by our assumption $\left(f>0\right.$ and $\left.H^{*} f \in L^{p}\left(\mathbb{R}_{+}\right)\right)$,

$$
0<\int_{t}^{\infty} \frac{f(x)}{x} \mathrm{~d} x<\infty \text { for all } t>0
$$

Thus, for any $q>0$, we have

$$
\begin{equation*}
\left(\int_{t}^{\infty} \frac{f(x)}{x} \mathrm{~d} x\right)^{q}=q \int_{t}^{\infty} \frac{f(x)}{x}\left(\int_{x}^{\infty} \frac{f(u)}{u} \mathrm{~d} u\right)^{q-1} \mathrm{~d} x \tag{2.9}
\end{equation*}
$$

Applying this equality with $q=p$ in (2.2) and using Fubini's theorem, we obtain

$$
\begin{equation*}
I_{p}^{*}=p \int_{0}^{\infty} f(x)\left(\int_{x}^{\infty} \frac{f(u)}{u} \mathrm{~d} u\right)^{p-1} \mathrm{~d} x . \tag{2.10}
\end{equation*}
$$

Further, apply (2.9) for $q=p-1$ and use again Fubini's theorem. This gives

$$
\begin{aligned}
I_{p}^{*} & =p(p-1) \int_{0}^{\infty} f(x) \int_{x}^{\infty} \frac{f(u)}{u}\left(\int_{u}^{\infty} \frac{f(v)}{v} \mathrm{~d} v\right)^{p-2} \mathrm{~d} u \mathrm{~d} x \\
& =p(p-1) \int_{0}^{\infty} \frac{f(u)}{u}\left(\int_{u}^{\infty} \frac{f(v)}{v} \mathrm{~d} v\right)^{p-2} \int_{0}^{u} f(x) \mathrm{d} x \mathrm{~d} u .
\end{aligned}
$$

Set

$$
\varphi(u)=\frac{f(u)^{1 /(p-1)}}{u} \int_{0}^{u} f(x) \mathrm{d} x
$$

and

$$
\psi(u)=f(u)^{(p-2) /(p-1)}\left(\int_{u}^{\infty} \frac{f(x)}{x} \mathrm{~d} x\right)^{p-2}
$$

(recall that $f>0$). Then, we have

$$
\begin{equation*}
I_{p}^{*}=p(p-1) \int_{0}^{\infty} \varphi(u) \psi(u) \mathrm{d} u . \tag{2.11}
\end{equation*}
$$

Furthermore, by (2.1),

$$
\begin{equation*}
\int_{0}^{\infty} \varphi(u)^{p-1} \mathrm{~d} u=\int_{0}^{\infty} \frac{f(u)}{u^{p-1}}\left(\int_{0}^{u} f(x) \mathrm{d} x\right)^{p-1} \mathrm{~d} u=\frac{I_{p}}{p^{\prime}}, \tag{2.12}
\end{equation*}
$$

and by (2.10),

$$
\begin{equation*}
\int_{0}^{\infty} \psi(u)^{(p-1) /(p-2)} \mathrm{d} u=\int_{0}^{\infty} f(u)\left(\int_{u}^{\infty} \frac{f(x)}{x} \mathrm{~d} x\right)^{p-1} \mathrm{~d} u=\frac{I_{p}^{*}}{p} \tag{2.13}
\end{equation*}
$$

for any $p>1, p \neq 2$.

Let $p>2$. Applying in (2.11) Hölder's inequality with the exponent $p-1$ and taking into account equalities (2.12) and (2.13), we obtain

$$
I_{p}^{*} \leq p(p-1)\left(\frac{I_{p}}{p^{\prime}}\right)^{1 /(p-1)}\left(\frac{I_{p}^{*}}{p}\right)^{(p-2) /(p-1)}
$$

This implies (2.7), which is the second inequality in (1.3).
Let now $1<p<2$. Applying in (2.11) Hölder's inequality with the exponent $p-1 \in$ $(0,1)$ (see [5, p. 140]), and using equalities (2.12) and (2.13), we get

$$
I_{p}^{*} \geq p(p-1)\left(\frac{I_{p}}{p^{\prime}}\right)^{1 /(p-1)}\left(\frac{I_{p}^{*}}{p}\right)^{(p-2) /(p-1)}
$$

Thus,

$$
\left(I_{p}^{*}\right)^{1 /(p-1)} \geq(p-1)^{p /(p-1)} I_{p}^{1 /(p-1)}
$$

This implies (2.8), which is the first inequality in (1.2).
It remains to show that the constants in (1.2) and (1.3) are optimal. First, set $f_{\varepsilon}(x)=$ $\chi_{[1,1+\varepsilon]}(x)(\varepsilon>0)$. Then,

$$
\left\|H f_{\varepsilon}\right\|_{p}^{p}=\int_{1}^{1+\varepsilon} x^{-p}(x-1)^{p} \mathrm{~d} x+\varepsilon^{p} \int_{1+\varepsilon}^{\infty} x^{-p} \mathrm{~d} x .
$$

Thus,

$$
\frac{\varepsilon^{p}(1+\varepsilon)^{1-p}}{p-1} \leq\left\|H f_{\varepsilon}\right\|_{p}^{p} \leq \frac{\varepsilon^{p}(1+\varepsilon)^{1-p}}{p-1}+\varepsilon^{p+1} .
$$

Further,

$$
\begin{aligned}
\left\|H^{*} f_{\varepsilon}\right\|_{p}^{p} & =\int_{0}^{1}\left(\int_{1}^{1+\varepsilon} \frac{\mathrm{d} t}{t}\right)^{p} \mathrm{~d} x+\int_{1}^{1+\varepsilon}\left(\int_{x}^{1+\varepsilon} \frac{\mathrm{d} t}{t}\right)^{p} \mathrm{~d} x \\
& =(\ln (1+\varepsilon))^{p}+\int_{1}^{1+\varepsilon}\left(\ln \frac{1+\varepsilon}{x}\right)^{p} \mathrm{~d} x .
\end{aligned}
$$

Thus,

$$
(\ln (1+\varepsilon))^{p} \leq\left\|H^{*} f_{\varepsilon}\right\|_{p}^{p} \leq(\ln (1+\varepsilon))^{p}(1+\varepsilon) .
$$

Using these estimates, we obtain that

$$
\lim _{\varepsilon \rightarrow 0+} \frac{\left\|H f_{\varepsilon}\right\|_{p}}{\left\|H^{*} f_{\varepsilon}\right\|_{p}}=(p-1)^{-1 / p}
$$

It follows that the constants in the right-hand side of (1.2) and the left-hand side of (1.3) cannot be improved.

Let $1<p<2$. Set $f_{\varepsilon}(x)=x^{\varepsilon-1 / p} \chi_{[0,1]}(x)(0<\varepsilon<1 / p)$. Then,

$$
\left\|H f_{\varepsilon}\right\|_{p}^{p} \geq \int_{0}^{1}\left(\frac{1}{x} \int_{0}^{x} t^{\varepsilon-1 / p} \mathrm{~d} t\right)^{p} \mathrm{~d} x=\frac{p^{p}}{\varepsilon p(p-1+\varepsilon p)^{p}}
$$

On the other hand,

$$
\left\|H^{*} f_{\varepsilon}\right\|_{p}^{p} \leq\left(\frac{1}{p}-\varepsilon\right)^{-p} \int_{0}^{1} x^{(\varepsilon-1 / p) p} \mathrm{~d} x=\frac{p^{p}}{\varepsilon p(1-\varepsilon p)^{p}}
$$

Hence,

$$
\varliminf_{\varepsilon \rightarrow 0+} \frac{\left\|H f_{\varepsilon}\right\|_{p}}{\left\|H^{*} f_{\varepsilon}\right\|_{p}} \geq \frac{1}{p-1}
$$

This implies that the constant in the left-hand side of (1.2) is optimal.
Let now $p>2$. Set $f_{\varepsilon}(x)=x^{-\varepsilon-1 / p} \chi_{[1,+\infty)}(x)\left(0<\varepsilon<1 / p^{\prime}\right)$. Then

$$
\left\|H^{*} f_{\varepsilon}\right\|_{p}^{p} \geq \int_{1}^{\infty}\left(\int_{x}^{\infty} \frac{\mathrm{d} t}{t^{1+1 / p+\varepsilon}}\right)^{p} \mathrm{~d} x=\frac{p^{p}}{\varepsilon p(1+\varepsilon p)^{p}}
$$

and

$$
\left\|H f_{\varepsilon}\right\|_{p}^{p} \leq \int_{1}^{\infty}\left(\frac{1}{x} \int_{0}^{x} \frac{\mathrm{~d} t}{t^{1 / p+\varepsilon}}\right)^{p} \mathrm{~d} x=\frac{p^{p}}{\varepsilon p(p-1-\varepsilon p)^{p}}
$$

Thus,

$$
\varliminf_{\varepsilon \rightarrow 0+} \frac{\left\|H^{*} f_{\varepsilon}\right\|_{p}}{\left\|H f_{\varepsilon}\right\|_{p}} \geq p-1
$$

This shows that the constant in the right-hand side of (1.3) is the best possible. The proof is completed.

Remark 2.1 We emphasize that in Theorem 1.1, we do not assume that f belongs to $L^{p}\left(\mathbb{R}_{+}\right)$. It is clear that the condition $H f \in L^{p}\left(\mathbb{R}_{+}\right)$does not imply that $f \in L^{p}\left(\mathbb{R}_{+}\right)$. For example, let $f(x)=|x-1|^{-1 / p} \chi_{[1,2]}(x), p>1$. Then,

$$
H f(x)=0 \text { for } x \in[0,1] \text { and } H f(x) \leq \frac{p^{\prime}}{x} \text { for } x \geq 1
$$

Thus, $H f \in L^{p}\left(\mathbb{R}_{+}\right)$, but $f \notin L^{p}\left(\mathbb{R}_{+}\right)$.
Now, we shall show that Theorems 1.1 and 1.2 are equivalent. First, we observe that without the loss of generality, we may assume that a function φ in Theorem 1.2 is locally absolutely continuous on \mathbb{R}_{+}. Indeed, let φ be a nonincreasing and nonnegative function on \mathbb{R}_{+}such that $\varphi(+\infty)=0$. Set

$$
\varphi_{n}(x)=n \int_{x}^{x+1 / n} \varphi(t) \mathrm{d} t \quad(n \in \mathbb{N}) .
$$

Then, functions φ_{n} are nonincreasing, nonnegative, and locally absolutely continuous on \mathbb{R}_{+}. Besides, the sequence $\left\{\varphi_{n}(x)\right\}$ increases for any $x \in \mathbb{R}_{+}$and converges to $\varphi(x)$ at every point of continuity of φ. By the monotone convergence theorem, $H \varphi_{n}(x) \rightarrow H \varphi(x)$ as $n \rightarrow \infty$ for any $x \in \mathbb{R}_{+}$, and $\left\|\varphi_{n}\right\|_{p} \rightarrow\|\varphi\|_{p}$. Furthermore, in Theorem 1.2, we may assume that $\varphi \in L^{p}\left(\mathbb{R}_{+}\right)$(in conditions of this theorem, the norms $\|H \varphi-\varphi\|_{p}$ and $\|\varphi\|_{p}$ are equivalent [1, p. 384]). Using this assumption, Hardy's inequality, and the dominated convergence theorem, we obtain that $\left\|H \varphi_{n}-\varphi_{n}\right\|_{p} \rightarrow\|H \varphi-\varphi\|_{p}$.

Let φ be a nonincreasing, nonnegative, and locally absolutely continuous function on \mathbb{R}_{+} such that $\varphi(+\infty)=0$. Then,

$$
\begin{aligned}
H \varphi(x)-\varphi(x) & =\frac{1}{x} \int_{0}^{x}[\varphi(t)-\varphi(x)] \mathrm{d} t \\
& =\frac{1}{x} \int_{0}^{x} \int_{t}^{x}\left|\varphi^{\prime}(u)\right| \mathrm{d} u \mathrm{~d} t=\frac{1}{x} \int_{0}^{x} u\left|\varphi^{\prime}(u)\right| \mathrm{d} u .
\end{aligned}
$$

Set $u\left|\varphi^{\prime}(u)\right|=f(u)$. Since $\varphi(+\infty)=0$, we have

$$
\varphi(x)=\int_{x}^{\infty}\left|\varphi^{\prime}(u)\right| \mathrm{d} u=\int_{x}^{\infty} \frac{f(u)}{u} \mathrm{~d} u .
$$

Thus,

$$
\begin{equation*}
H \varphi(x)-\varphi(x)=\frac{1}{x} \int_{0}^{x} f(u) \mathrm{d} u=H f(x) \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi(x)=\int_{x}^{\infty} \frac{f(u)}{u} \mathrm{~d} u=H^{*} f(x) \tag{2.15}
\end{equation*}
$$

Conversely, if $f \in \mathcal{M}^{+}\left(\mathbb{R}_{+}\right)$and

$$
\int_{0}^{x} f(u) \mathrm{d} u<\infty \quad \text { for any } \quad x>0
$$

we define φ by (2.15) and then we have equality (2.14). These arguments show the equivalence of Theorems 1.1 and 1.2.

References

1. Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988)
2. Boza, S., Soria, J.: Solution to a conjecture on the norm of the Hardy operator minus the identity. J. Funct. Anal. 260, 1020-1028 (2011)
3. Carro, M., Gogatishvili, A., Martín, J., Pick, L.: Functional properties on rearrangement invariant spaces defined in terms of oscillations. J. Funct. Anal. 229, 375-404 (2005)
4. Carro, M., Gogatishvili, A., Martín, J., Pick, L.: Weighted inequalities involving two Hardy operators with applications to embeddings of function spaces. J. Oper. Theory 59, 309-332 (2008)
5. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1967)
6. Kolyada, V.I.: On embedding theorems. In: Nonlinear Analysis, Function Spaces and Applications, vol. 8 (Proceedings of the Spring School held in Prague, 2006), pp. 35-94, Prague (2007)
7. Kruglyak, N., Setterqvist, E.: Sharp estimates for the identity minus Hardy operator on the cone of decreasing functions. Proc. Am. Math. Soc. 136, 2005-2013 (2008)

[^0]: V. I. Kolyada (\boxtimes)

 Department of Mathematics, Karlstad University, Universitetsgatan 1, 65188 Karlstad, Sweden e-mail: viktor.kolyada@kau.se

