Skip to main content
Log in

Fate of Antimony and Arsenic in Contaminated Waters at the Abandoned Su Suergiu Mine (Sardinia, Italy)

废弃Su Suergiu矿井(撒丁岛,意大利)废水中锑和砷污染

Das Verhalten von Antimon und Arsen in belasteten Vorflutern der stillgelegten Su Suergiu Mine (Sardinien, Italien)

Situación de antimonio y arsénico en las aguas contaminadas en la mina abandonada Su Suergiu (Cerdeña, Italia)

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

We investigated the fate of Sb and As downstream of the abandoned Su Suergiu mine (Sardinia, Italy) and surrounding areas. The mined area is a priority in the Sardinian remediation plan for contaminated sites due to the high concentrations of Sb and As in the mining-related wastes, which may impact the Flumendosa River that supplies water for agriculture and domestic uses. Hydrogeochemical surveys conducted from 2005 to 2015 produced time-series data and downstream profiles of water chemistry at 46 sites. Water was sampled at: springs and streams unaffected by mining; adits and streams in the mine area; drainage from the slag heaps; stream water downstream of the slag drainages; and the Flumendosa River downstream from the confluence of the contaminated waters. At specific sites, water sampling was repeated under different flow conditions, resulting in a total of 99 samples. The water samples were neutral to slightly alkaline. Elevated Sb (up to 30 mg L−1) and As (up to 16 mg L−1) concentrations were observed in water flowing from the slag materials from where the Sb ore was processed. These slag materials were the main Sb and As source at Su Suergiu. A strong base, Na-carbonate, from the foundry wastes, had a major influence on mobilizing Sb and As. Downstream contamination can be explained by considering that: (1) the predominant aqueous species, Sb(OH)6 and HAsO4 −2, are not favored in sorption processes at the observed pH conditions; (2) precipitation of Sb- and As-bearing solid phases was not observed, which is consistent with modeling results indicating undersaturation; and (3) the main decrease in dissolved Sb and As concentrations was by dilution. Dissolved As concentrations in the Flumendosa River did not generally exceed the EU limit of 10 µg L−1, whereas dissolved Sb in the river downstream of the contamination source always exceeded the EU limit of 5 µg L−1. Recent actions aimed at retaining runoff from the slag heaps are apparently not sufficiently mitigating contamination in the Flumendosa River.

抽象

研究了废弃Su Suergiu矿井(撒丁岛,意大利)下游及附近的锑和砷污染归宿。采矿废物含高浓度锑和砷,可能污染农业和生活水源Flumendosa河,废弃矿井被列为撒丁岛优先规划治理区。研究利用2005年至2015年水文地球化学时间系列数据和下游46个采样点水化学剖面数据。水样点包括:未受采矿影响的泉和溪流、矿区内矿坑及溪流、矿渣堆排放废水、矿渣堆下游河水和Flumendosa河污水汇水点下游。在某些特殊取样点,因水流条件不同而重复取样,因此水样总数达99个。水呈中至弱碱性。从锑残渣堆流出废水的锑和砷浓度分别增大至30 mg·L-1和16 mg·L-1。该矿渣为Su Suergiu矿锑和砷的主要污染源。铸造车间强碱性废物中的碳酸钠对锑和砷活性有重要影响。影响下游污染特征的重要因素包括:i)监测pH条件不利于主要水相形态(Sb(OH)6和HAsO -24 )的吸附作用;ii)与模拟结果一致,没观测到锑沉淀和含砷固相,溶液系统未饱和;iii)稀释使可溶态锑和砷浓度减小。Flumendosa河可溶砷浓度并未超过欧盟10 µg·L-1标准,而河流下游溶解锑常常超过欧盟5 µg·L-1标准。近期旨在控制矿渣堆径流的措施不足以减缓Flumendosa河污染。

Zusammenfassung

im Abstrom der stillgelegten Su Suergiu Mine (Sardinien, Italien) und ihrer Umgebung wurde das Verhalten von Sb und As untersucht. Aufgrund der hohen Sb- und As-Konzentrationen in den Berbauabfällen wird diese Bergbauregion im sardischen Sanierungsplan für Belastungsbereiche prioritär behandelt. Die Rückstände können den Flumendosa River beeinflussen, aus dem Wasser für landwirtschaftliche und urbane Zwecke gewonnen wird. Zwischen 2005 und 2015 wurden hydrogeologische Untersuchungen durchgeführt. Dabei wurden hydrochemische Zeitreihen sowie Profile an 46 Probeentnahmestellen entlang des Flusses aufgenommen. Die Wasserproben stammen aus Quellen, bergbauunbeeinflussten und -beeinflussten Vorflutern, Stollenaustritten, Schlackenhaldendrainagen sowie aus dem Flumendosa River abstromig des Zuflusses von kontaminiertem Wasser. An einzelnen Standorten wurden Wasserprobenahmen unter unterschiedlichen Abflussbedingungen wiederholt, so dass insgesamt 99 Proben vorlagen. Die Wasserproben waren neutral bis schwach alkalisch. Erhöhte Sb- (bis zu 30 mg L-1) und As- (bis zu 16 mg L-1) Werte wurden im Wasser, welche aus den Schlackenhalden der Sn-Produktion austrat, beobachtet. Dieses Schlackenmaterial war die Hauptquelle für Sb und As in Su Suergiu. Eine starke Base, Na-Karbonat aus Gießereiabfällen, hatte einen deutlichen Einfluss auf die Sb- und As-Mobilisierung. Abstromig auftretende Kontaminationen können durch drei Punkte erklärt werden: i) die vorwiegende auftretenden Speziationen Sb(OH)6 und HAsO 2-4 werden bei den gemessenen ph-Werten nicht bevorzugt durch Sorptionsprozessen zurückgehalten, ii) eine Fällung von Sb- und As als feste Phase wurde nicht beobachtet, was konsistent mit einer in den Modellergebnisse erkannten Untersättigungen ist und iii) der Rückgang der gelösten Sb- und As- Konzentration kann auf Verdünnungsprozesse zurückgeführt werden. Die gelösten As-Konzentrationen im Flumendosa River übersteigen nicht grundsätzlich das EU Limit von 10 µg L-1, wohingegen die gelösten Sb-Konzentrationen immer über dem EU Grenzwert von 5 µg L-1 liegen. Aktuelle Arbeiten, welche auf die Austrittminderung von Wasser aus den Schlackenhalden zielen, sind derzeit nicht ausreichend, um die Kontamination des Flumendosa Rivers zu verhindern.

Resumen

Hemos investigado la situación de Sb y As aguas abajo de la mina abandonada Su Suergiu (Cerdeña, Italia) y en las zonas aledañas. El área minera es una prioridad en el plan de remediación de sitios contaminados debido a las altas concentraciones de Sb y As en los residuos mineros que podrían impactar el río Flumendosa que proporciona agua para agricultura y usos domésticos. Las prospecciones hidrogeoquímicas realizadas entre 2005 y 2015 produjeron datos en el tiempo y perfiles de la química del agua en 46 sitios aguas abajo. El agua fue muestreada en manantiales y arroyos no afectados por la minería, cursos de agua en el área de la mina, drenaje de las pilas de residuos, aguas abajo de los drenajes anteriores y en el río Flumendosa aguas abajo de la confluencia con las aguas contaminadas. En sitios específicos, el muestreo de agua se repitió en diferentes condiciones de flujo, resultando en un total de 99 muestras. Las muestras de agua eran neutras o ligeramente alcalinas. Se observaron concentraciones elevadas de Sb (hasta 30 mg L-1) y As (hasta 16 mg L-1) en el agua que fluye de los residuos provenientes del lugar se procesó el mineral Sb. Estos residuos son la fuente principal de Sb y As en Su Suergiu. Una base fuerte, carbonato de sodio, de los residuos de fundición, tuvo una gran influencia en la movilización de Sb y As. La contaminación aguas abajo puede explicarse considerando que: i) las especies acuosas predominantes, Sb (OH) 6 y HAsO4 -2, no son favorecidas en los procesos de sorción en las condiciones de pH observadas; ii) no se observó la precipitación de las fases sólidas que contenían Sb y As, lo cual es consistente con los resultados del modelado que indican no saturación; iii) la principal disminución en las concentraciones de Sb y As disueltas fue por dilución. Las concentraciones de As en el río Flumendosa no excedieron generalmente el límite de la UE de 10 μg L-1, mientras que Sb disuelto en el río corriente abajo de la fuente de la contaminación excedió siempre el límite de 5 μg L-1 de la UE. Las acciones recientes dirigidas a retener la escorrentía de las pilas de residuos no son aparentemente suficientes para mitigar la contaminación en el río Flumendosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amat di San Filippo P (2014) L’Antimonio in Sardegna e la Fonderia di Villasalto. http://www.accademiasarda.it/2014/04/lantimonio-in-sardegna-e-la-fonderia-di-villasalto-di-paolo-amat-di-san-filippo/ (accessed May 2016)

  • Asaoka S, Takahashi Y, Araki Y, Tanimizu M (2012) Comparison of antimony and arsenic behavior in an Ichinokawa River water–sediment system. Chem Geol 334:1–8

    Article  Google Scholar 

  • Ashley PM, Craw D, Graham BP, Chappell DA (2003) Environmental mobility of antimony around mesothermal stibnite deposits, New South Wales, Australia and southern New Zealand. J Geochem Expl 77:1–14

    Article  Google Scholar 

  • Beauchemin S, Kwong YTJ, Desbarats AJ, MacKinnon T, Percival JB, Parsons MB, Pandya K (2012) Downstream changes in antimony and arsenic speciation in sediments at a mesothermal gold deposit in British Columbia, Canada. Appl Geochem 27:1953–1965

    Article  Google Scholar 

  • Bhattacharya P, Welch AH, Stollenwerk KG, McLaughlin MJ, Bundschuh J, Panaullah G (2007) Arsenic in the environment: Biology and Chemistry. Sci Total Environ 379:109–120

    Article  Google Scholar 

  • Biddau R (2012) Approccio geochimico-statistico per la valutazione del background geochimico nelle acque sotterranee. Applicazioni agli acquiferi della Sardegna. FSE 2007–2013, LR 7/2007, Regione Autonoma Sardegna, Cagliari (in Italian)

  • Biddau R, Cidu R (2013) Groundwater contamination: environmental issues and case studies in Sardinia (Italy). In: Scozzari A, Dotsika E (eds) Threats to the quality of groundwater resources: prevention and Control, The handbook of environmental. chemistry. Springer-Verlag, Berlin

    Google Scholar 

  • Cabras R (2006) Studi idrogeochimici e mineralogici nell’area della miniera abbandonata di Su Suergiu (Villasalto). Tesi di Laurea in Scienze Geologiche, Università di Cagliari, p 97 (in Italian)

  • Carmignani L, Cocozza T, Ghezzo C, Pertusati PC, Ricci CA (1986) Outlines of the Hercynian basement of Sardinia. In: Carmignani L, Cocozza T, Ghezzo C, Pertusati PC, Ricci CA (Eds), Guide book to the excursion on the Palaeozoic basement of Sardinia. IGCP Newsletter 5, Special Issue, pp 11–21, Pacini Editore, Pisa

  • Carvalho PCS, Ana MR, Neiva AMR, Silva MVG, Ferreira da Silva EA (2014) Geochemical comparison of waters and stream sediments close to abandoned Sb–Au and As–Au mining areas, northern Portugal. Chem Erde 74:267–283

    Article  Google Scholar 

  • Casiot C, Ujevic M, Munoz M, Seidel JL, Elbaz-Poulichet F (2007) Antimony and arsenic mobility in a creek draining an antimony mine abandoned 85 years ago (Upper Orb Basin, France). Appl Geochem 22:788–798

    Article  Google Scholar 

  • Cidu R (1996) Inductively coupled plasma—mass spectrometry and—optical emission spectrometry determination of trace elements in water. Atom Spectrosc 17:155–162

    Google Scholar 

  • Cidu R (2000) Trace elements: Li, Be, B, Al, V, Cr, Co, Ni, Se, Sr, Ag, Sn, Ba, and Tl. In: Nollet L (ed) Handbook of water analysis, Ch 23. Marcel Dekker, New York, pp 459–482

    Google Scholar 

  • Cidu R (2011) Mobility of aqueous contaminants at abandoned mining sites: insights from case studies in Sardinia with implications for remediation. Environ. Earth Sci 64:503–512

    Article  Google Scholar 

  • Cidu R, Frau F (2009) Distribution of trace elements in filtered and non filtered aqueous fractions: Insights from rivers and streams of Sardinia (Italy). Appl Geochem 24:611–623

    Article  Google Scholar 

  • Cidu R, Frau F, Tore P (2011) Drinking water quality: Comparing inorganic components in bottled water and Italian tap water. J Food Compos. Analysis 24:184–193

    Google Scholar 

  • Cidu R, Biddau R, Dore E, Vacca A, Marini L (2014) Antimony in the soil–water–plant system at the Su Suergiu abandoned mine (Sardinia, Italy): strategies to mitigate contamination. Sci Total Environ 497–498:319–331

    Article  Google Scholar 

  • Cidu R, Biddau R, Dore E (2015) Determination of trace of Sb(III) using ASV in Sb-rich water samples affected by mining. Anal Chim Acta 854:34–39

    Article  Google Scholar 

  • Council of the European Union (1998) Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off J L 330(05/12/1998):35–54

    Google Scholar 

  • Craw D, Falconer D, Youngson JH (2003) Environmental arsenopyrite stability and dissolution: theory, experiment, and field observations. Chem Geol 199:71–82. doi:10.1016/S0009-2541(03)00117-7

    Article  Google Scholar 

  • Cuzzocrea C (2007) Studio idrogeochimico e mineralogico delle aree minerarie di Su Suergiu (Villasalto) e Monte Narba (San Vito). Tesi di Laurea in Scienze Geologiche, Università di Cagliari, pp 76 (in Italian)

  • Desbarats AJ, Parsons MB, Percival JB, Beauchemin S, Kwong YTJ (2011) Geochemistry of mine waters draining a low-sulfide, gold-quartz vein deposit, Bralorne, British Columbia. Appl Geochem 26:1990–2003

    Article  Google Scholar 

  • Fawcett SE, Jamieson HE, Nordstrom DK, McCleskey RB (2015) Arsenic and antimony geochemistry of mine wastes, associated waters and sediments at the Giant Mine, Yellowknife, Northwest Territories, Canada. Appl Geochem 62:3–17

    Article  Google Scholar 

  • Filella M, Belzile N, Chen Y-W (2002a) Antimony in the environment: a review focused on natural water. I. occurrence. Earth Sci Rev 57:125–176

    Article  Google Scholar 

  • Filella M, Belzile N, Chen Y-W (2002b) Antimony in the environment: a review focused on natural waters II. Relevant solution chemistry. Earth Sci Rev 59:265–285

    Article  Google Scholar 

  • Filella M, Philippo S, Belzile N, Chen Y, Quentel F (2009) Natural attenuation processes applying to antimony: a study in the abandoned antimony mine in Goesdorf, Luxembourg. Sci Total Environ 407:6205–6216

    Article  Google Scholar 

  • Frau F, Cidu R, Ardau C (2012) Short-term changes in water chemistry in the Baccu Locci stream (Sardinia, Italy) affected by past mining. Appl Geochem 27:1844–1853

    Article  Google Scholar 

  • Funedda A, Naitza S, Tocco S (2005) Caratteri giacimentologici e controlli strutturali nelle mineralizzazioni idrotermali tardo-erciniche ad As-Sb-W-Au del basamento metamorfico paleozoico della Sardegna sud-orientale. Resoconti Associazione Mineraria Sarda CX:25–46 (in Italian)

  • Gmelin L (1908) As, Sb written by F Ephraim (Ed) Gmelin-Kraut’s Handbuch der Anorganischen Chemie, Band 3, Abteilung 2, Carl Whiter’s Üniversitatbuchandlung, Heidelberg, 455

  • GURI (2006) Decreto legislativo 3 aprile 2006, n. 152, Norme in materia ambientale. Gazzetta Ufficiale della Repubblica Italiana n. 88 del 14-4-2006, suppl. ord. n. 96, Roma (in Italian)

  • Gustafsson JP (2001) Modeling the acid-base properties and metal complexation of humic substances with the Stockholm Humic Model. J Colloid Interface Sci 244:102–112

    Article  Google Scholar 

  • Hiller E, Laninská B, Chovan M, Jurkovič L, Klimko T, Jankulár M, Hovorič R, Šottník P, Fľaková R, Ženišová Z, Ondrejková I (2012) Arsenic and antimony contamination of waters, stream sediments and soils in the vicinity of abandoned antimony mines in the Western Carpathians, Slovakia. Appl Geochem 27:598–614

    Article  Google Scholar 

  • IGEA (2009) Piano di investigazione iniziale dell’area mineraria di “Su Suergiu”. IGEA SpA, Campo Pisano (in Italian)

  • Kossoff D, Welch MD, Hudson-Edwards KA (2015) Scorodite precipitation in the presence of antimony. Chem Geol 4061–9

  • Langmuir D (1997) Aqueous environmental geochemistry. Prentice-Hall, NJ

    Google Scholar 

  • Leuz AK, Mönch H, Johnson CA (2006) Sorption of Sb(III) and Sb(V) to goethite: influence on Sb(III) oxidation and mobilization. Environ Sci Technol 40(23):7277–7282

    Article  Google Scholar 

  • Leverett P, Reynolds JK, Roper AJ, Williams PA (2012) Tripuhyite and schafarzikite: two of the ultimate sinks for antimony in the natural environment. Mineral Mag 76:891–902

    Article  Google Scholar 

  • Mandal BK (2015) Changing concept of arsenic toxicity with development of speciation techniques. Ch 7. In: Flora SJS (ed) Handbook of As toxicology. Academic Press, Cambridge, MA, pp 175–201

    Google Scholar 

  • Masson M, Schäfer J, Blanc G, Dabrin A, Castelle S, Lavaux G (2009) Behavior of arsenic and antimony in the surface freshwater reaches of a highly turbid estuary, the Gironde Estuary, France. Appl Geochem 24:1747–1756

    Article  Google Scholar 

  • McCleskey RB, Nordstrom DK, Ryan JN (2011) Electrical conductivity method for natural waters. Appl Geochem 26:27–29

    Article  Google Scholar 

  • Mitsunobu S, Harada T, Takahashi Y (2006) Comparison of antimony behavior with that of arsenic under various soil redox conditions. Environ Sci Technol 40:7270–7276

    Article  Google Scholar 

  • Nordstrom DK (1977) Thermochemical redox equilibria of ZoBell’s solution. Geochim Cosmochim Acta 41:1835–1841

    Article  Google Scholar 

  • Nordstrom DK, Campbell KM (2014) Modeling low-temperature geochemical processes. In: Drever JI (ed), Surface and Ground Water, Weathering, and Soils, Treatise on Geochemistry, vol 7, HD Holland KK Turekian (Ex Eds), Elsevier, Amsterdam, pp 27–68

    Google Scholar 

  • Okkenhaug G, Zhu YG, He J, Xi L, Lei L, Mulder J (2012) Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: differences in mechanisms controlling soil sequestration and uptake in rice. Environ Sci Technol 46:3155–3162

    Article  Google Scholar 

  • Ondrejková I, Ženišová Z, Flaková R, Krčmáŕ D, Sracek O (2013) The distribution of antimony and arsenic in waters of the Dúbrava abandoned mine site, Slovak Republic. Mine Water Environ 32:207–221

    Article  Google Scholar 

  • Oremland R (2016) Geomicrobial interactions with arsenic and antimony. In: Ehrlich HL, Newman DK, Kappler A (eds) 6th edit. CRC Press, Boca Raton, pp 297–321

    Google Scholar 

  • RAS—Regione Autonoma della Sardegna (1998) Nuovo studio dell’idrologia superficiale della Sardegna. Assessorato della Programmazione, Bilancio ed Assetto del Territorio, Ente Autonomo del Flumendosa, Cagliari (in Italian)

  • RAS—Regione Autonoma della Sardegna (2003) Piano Regionale di Gestione dei Rifiuti – Piano di Bonifica dei Siti Inquinati, 255 pp. Allegato 5—Schede dei siti minerari dimessi. Cagliari (in Italian)

  • RAS—Regione Autonoma della Sardegna (2013) Carta geologica di base della Sardegna in scala 1:25000. http://www.sardegnageoportale.it/argomenti/cartageologica.html. Accessed Oct 2013

  • Reimann C, Matschullat J, Birke M, Salminen R (2009) Arsenic distribution in the environment: the effects of scale. Appl Geochem 24:1147–1167

    Article  Google Scholar 

  • Ritchie VJ, Ilgen AG, Mueller SH, Trainor TP, Goldfarb RJ (2013) Mobility and chemical fate of antimony and arsenic in historic mining environments of the Kantishna Hills district, Denali National Park and Preserve, Alaska. Chem Geol 335:172–188

    Article  Google Scholar 

  • Roper AJ, Williams PA, Filella M (2012) Secondary antimony minerals: Phases that control the dispersion of antimony in the supergene zone. Chemie. Erde 72:9–14

    Article  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  Google Scholar 

  • Thanabalasingam P, Pickering WF (1990) Specific sorption of antimony (III) by the hydrous oxides of Mn, Fe and Al. Water Air Soil Poll 49(1–2):175–185

    Article  Google Scholar 

  • Wang X, He M, Xi J, Lu X (2011) Antimony distribution and mobility in rivers around the world’s largest antimony mine of Xikuangshan, Hunan Province, China. Microchemical J 97: 4–11

    Article  Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality. 4th edit, World Health Organization, Geneva

    Google Scholar 

  • Willis SS, Haque SE, Johannesson KH (2011) Arsenic and antimony in groundwater flow systems: a comparative study. Aquat Geochem 17:775–807

    Article  Google Scholar 

  • Wilson SC, Lockwood PV, Ashley PM, Tighe M (2010) The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review. Environ Poll 158:1169–1181

    Article  Google Scholar 

  • Wolery TW, Jarek RL (2003) Software user’s manual. EQ3/6, Version 8.0. Sandia National Laboratories—US Dept of Energy Report

  • Wu X-D, Song J-M, Li X-G, Yuana H-M, Li N (2011) Behaviors of dissolved antimony in the Yangtze River estuary and its adjacent waters. J Environ Monitor 13:2292–2303

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Ministero Università Ricerca Scientifica Tecnologica (PRIN 2009J425AL, Coordinator R Cidu), the University of Cagliari, and the Regione Autonoma della Sardegna (PO Sardegna FSE 2007–2013, L.R.7/2007, R Biddau) for financial support. Thanks to G De Giudici for helping with the SEM analyses. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Cidu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 63 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cidu, R., Dore, E., Biddau, R. et al. Fate of Antimony and Arsenic in Contaminated Waters at the Abandoned Su Suergiu Mine (Sardinia, Italy). Mine Water Environ 37, 151–165 (2018). https://doi.org/10.1007/s10230-017-0479-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-017-0479-8

Keywords

Navigation