Skip to main content
Log in

Removal of Trace Metals from Acid Mine Drainage Using a Sequential Combination of Coal Ash-Based Adsorbents and Phytoremediation by Bunchgrass (Vetiver [Vetiveria zizanioides L])

Entfernung von Spurenmetallen aus saurem Grubenwasser durch sequenzielle Kombination aus Adsorbenzien aus Kohleaschen und Pflanzenbehandlung mit Bunch-Gras (Vetiver [Vetiveria zizanioides L])

La remoción de metales traza desde drenaje ácido de minas usando una combinación secuencial de adsorbentes en base a ceniza de carbón y fitorremediación por hierba (Vetiver [Vetiveria zizanioides L])

顺次粉煤灰吸附和丛生禾草(香根草)植物修复法去除酸性矿山废水痕量金属

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Potentially scalable low-cost treatment methods for acid mine drainage (AMD) are very limited. We used a sequential combination of adsorption and phytoremediation by bunchgrass (Vetiver [Vetiveria zizanioides L]) in a semi-batch system to remove Zn, Mn, Ni, and Cu from AMD. The objectives were: (1) to compare the removal of these metals by raw and NaOH-activated coal ash (NaOH-CA); and (2) to determine the effect of sequencing adsorption and phytoextraction on metal removal. The NaOH-CA adsorbed significantly more metals than raw coal ash (RCA) in both batch and semi-batch fixed column experiments, demonstrating the effectiveness of NaOH hydrothermal activation, which forms zeolites. Adsorption by NaOH-CA removed 59.1, 95.7, 67.6, and 77.9% of the Zn, Mn, Ni, and Cu, respectively, compared to 50.6, 95.1, 30.2, and 60.5% for the RCA. Metal removal by phytoremediation was generally less than that by adsorption, accounting for between 3.4 and 54.6% for both adsorbents. Phytoremediation following adsorption by NaOH-CA removed 89.2–99.9% of the metals compared to 70.8–98.5% when phytoremediation followed adsorption by RCA. Overall, relatively high metal removal efficiencies were attained, considering the acidic conditions (pH <4), at hydraulic residence times of 1 to 5 days. Using coal ash to treat AMD is potentially a low-cost and environmentally friendly option for minimizing the adverse public health and environmental risks associated with both wastes.

Zusammenfassung

Es gibt nur sehr wenige potenziell skalierbare Behandlungsmethoden für saure Grubenwässer (AMD) mit niedrigen Kosten. Wir untersuchten eine sequenzielle Kombination aus Adsorption und Pflanzenbehandlung mit Bunch-Gras (Vetiver [Vetiveria zizanioides L]) in einem Semi-Batch-Versuch, um Zn, Mn, Ni und Cu aus saurem Grubenwasser zu entfernen. Ziele der Untersuchung waren: (1) die Entfernung dieser Metalle durch Rohasche (RKA) und Na-OH-aktivierte Kohleasche (NaOH-KA) zu vergleichen und (2) den Effekt von sequenzieller Adsorption und Pflanzenbehandlung auf die Metallentfernung zu bestimmen. NaOH-KA adsorbierte signifikant mehr Metalle als RKA sowohl in Batch-Versuchen als auch in Semi-Batch-Säulen-Versuchen. Das demonstrierte die Effektivität der hydrothermalen NaOH-Aktivierung, bei der Zeolite gebildet werden. Die Adsorption mit NaOH-KA entfernte 59,1%, 95,7%, 67,6% und 77,9% des Zn, Mn, Ni bzw. Cu, verglichen zu 50,6%, 95,1%, 30,2% und 60,5% durch RKA. Die Metallentfernung durch Pflanzenbehandlung war generell geringer als durch Adsorption, zwischen 3,4% und 54,6% für beide Adsorbenzien. Pflanzenbehandlung nach Adsorption durch NaOH-KA entfernte 89,2-99,9% der Metalle im Vergleich zu 70,8-98,5% durch Pflanzenbehandlung nach Adsorption mit RKA. Insgesamt wurden in Anbetracht der sauren Bedingungen (pH<4) relativ hohe Metallentfernungsraten erreicht bei hydraulischen Aufenthaltszeiten von 1 bis 5 Tagen. Die Nutzung von Kohleaschen ist eine potenzielle Niedrig-Kosten- und umweltfreundliche Möglichkeit, um die schädlichen Gesundheits- und Umweltrisiken beider Abfälle zu minimieren.

Resumen

Los métodos para el tratamiento de drenaje ácido de minas (AMD) potencialmente escalables son muy limitados. Hemos usado una combinación secuencial de adsorción y fitorremediación por hierba (Vetiver [Vetiveria zizanioides L]) en un sistema semi-batch para remover Zn, Mn, Ni y Cu desde AMD. Los objetivos fueron: (1) comparar la remoción de estos metales con la de cenizas de carbón crudo (RCA) y cenizas de carbón activadas con NaOH (NaOH-CA); y (2) determinar el efecto de adsorción secuencial y fitoextracción sobre la remoción de metales. NaOH-CA adsorbió metales de modo más significativo que RCA tanto en batch como en experimentos semi-batch en columnas, demostrando la efectividad de la activación hidrotermal con NaOH, que forma zeolitas. La adsorción por NaOH-CA removió 59,1, 95,7, 67,6 y 77,9% de Zn, Mn, Ni y Cu, respectivamente, comparado con 50,6, 95,1, 30,2 y 60,5% para RCA. La remoción de metales por fitorremediación fue generalmente menor que la obtenida por adsorción (entre 3,4 y 54,6% para ambos adsorbentes). La fitorremediación siguiendo la adsorción por NaOH-CA removió 89,2-99,9% de los metales comparados con 70,8-98,5% cuando la fitorremediación fue seguida por adsorción por RCA. En forma global se obtuvieron relativamente altas tasas de remoción de metales considerando la acidez (pH<4), a tiempos de residencia de 1 a 5 días. El uso de cenizas de carbón para tratar AMD es potencialmente una opción de bajo costo y ambientalmente amigable para minimizar los riesgos ambientales y sobre la salud humana que están asociados a ambos residuos.

顺次粉煤灰吸附和丛生禾草(香根草)植物修复法去除酸性矿山废水痕量金属

具有潜在可扩展能力的低成本酸性矿山废水(AMD)处理方法并不多。本文顺次利用吸附和丛生禾草(香根草)生物修复方法去除酸性矿山废水锌、锰、镍和铜。研究目标:(1) 比较“生”粉煤灰(RCA)与NaOH活化粉煤灰(NaOH-CA)的金属去除效果;(2) 评价吸附与生物修复顺次处理方案的去除效果。NaOH活化粉煤灰(NaOH-CA)的批次和半批次柱试验吸附效果都明显比“生”粉煤灰(RCA)好,显示出NaOH的热液活性和沸石生成作用。NaOH活化粉煤灰的锌、锰、镍和铜去除率分别为59.1%、95.7%、67.6%和77.9%,“生”活化粉煤灰(RCA)去除率分别为50.6%、95.1%、30.2%和60.5%。NaOH-CA吸附处理后的顺次丛生禾草(香根草)生物修复将金属去除率升至89.2~99.9%,而RCA吸附处理后的丛生禾草(香根草)生物修复将金属去除率提高至70.8-98.5%。总体上,在酸性条件(pH<4)和水力驻留时间1~5天的条件下,两种顺次处理方法都可获得更高的痕量金属去除率。粉煤灰酸性矿山废水处理是一种有潜力、低成本、环境友好型处理方法,能够同时减小粉煤灰和废性矿山废水的健康和环境风险。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Energy Combust 36:327–363

    Article  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  Google Scholar 

  • Cetin S, Pehlivan E (2007) The use of fly ash as a low cost, environmentally friendly alternative to activated carbon for the removal of heavy metals from aqueous solutions. Colloid Surface A 298:83–87

    Article  Google Scholar 

  • Chang HL, Shih WH (1998) A general method for the conversion of fly ash into zeolites as ion exchangers for cesium. Ind Eng Chem Res 37:71–78

    Article  Google Scholar 

  • Chenxi L (2008) Batch and bench-scale fixed-bed column evaluations of heavy metal removals from aqueous solutions and synthetic landfill leachate using low-cost natural adsorbents. Diss, Queen’s Univ, Kingston, Ontario, Canada

  • Cheong YW, Das BK, Roy A, Bhattacharya J (2010) Performance of a SAPS-based chemo-bioreactor treating acid mine drainage using low-DOC spent mushroom compost, and limestone as substrate. Mine Water Environ 29(3):217–224

    Article  Google Scholar 

  • Clyde EJ, Champagne P, Jamieson HE, Gorman C, Sourial J (2016) The use of a passive treatment system for the mitigation of acid mine drainage at the Williams Brothers Mine (California): pilot-scale study. J Cleaner Prod 1(130):116–125

    Article  Google Scholar 

  • Danh LT, Truong P, Mammucari R, Tran T, Foster N (2009) Vetiver grass, Vetiveria zizainoides: a choice plant for phytoremediation of heavy metals and organic wastes. Int J Phytoremediat 11(8):664–691

    Article  Google Scholar 

  • Dean AP, Lynch S, Rowland P, Toft BD, Pittman JK, White KN (2013) Natural wetlands are efficient at providing long-term metal remediation of freshwater systems polluted by acid mine drainage. Environ Sci Technol 47(21):12029–12036

    Article  Google Scholar 

  • Ernst WHO (2006) Evolution of metal tolerance in higher plants. For Snow Landsc Res 80(3):251–274

    Google Scholar 

  • Evangelou MWH, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68:989–1003

    Article  Google Scholar 

  • Feng D, Aldrich C, Tan H (2000) Treatment of acid mine drainage by use of heavy metal precipitation and ion exchange. Miner Eng 13:623–624

    Article  Google Scholar 

  • Grassi M, Kaykioglu G, Belgiorno V, Lofrano G (2012) Removal of emerging contaminants from water and wastewater by adsorption process. In: Lofrano G (ed) Emerging compounds removal from wastewater. Springer, Netherlands, pp 15–37

    Chapter  Google Scholar 

  • Gwenzi W, Mupatsi N (2016) Evaluation of heavy metal leaching from coal ash-versus conventional concrete monoliths and debris. Waste Manage 49:114–123. doi:10.1016/j.wasman.2015.12.029

    Article  Google Scholar 

  • Gwenzi W, Musarurwa T, Nyamugafata P, Chaukura N, Chaparadza A, Mbera S (2014) Adsorption of Zn2+ and Ni2+ in a binary aqueous solution by biosorbents derived from sawdust and water hyacinth. Water Sci Technol 70(8):1419–1427

    Article  Google Scholar 

  • Höller H, Wirsching U (1985) Zeolite formation from fly ash. Fortschritte Miner 63: 21–43

    Google Scholar 

  • Irving H, Williams RJP (1948) Order of stability of metal complexes. Nature 162:746–747

    Article  Google Scholar 

  • Jafaripour A, Rowson NA, Ghataora GS (2015) Utilisation of residue gas sludge (BOS sludge) for removal of heavy metals from acid mine drainage (AMD). Int J Miner Process 144:90–96

    Article  Google Scholar 

  • Kuzovkina YA, Volk TA (2009) The characterization of willow (Salix L.) varieties for use in ecological engineering applications: co-ordination of structure, function and autecology. Ecol Eng 35:1178–1189

    Article  Google Scholar 

  • Lee G, Bigham JM, Faure G (2002) Removal of trace metals by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee. Appl Geochem 17(5):569–581

    Article  Google Scholar 

  • Mapanda F, Nyamadzawo G, Nyamangara J, Wuta M (2007) Effects of discharging acid-mine drainage into evaporation ponds lined with clay on chemical quality of the surrounding soil and water. Phys Chem Earth 32:1366–1375

    Article  Google Scholar 

  • Masindi V, Gitari MW, Tutu H, DeBeer M (2015) Efficiency of ball milled South African bentonite clay for remediation of acid mine drainage. J Water Process Eng 8:227–240

    Article  Google Scholar 

  • Mohan D, Chander S (2006) Removal and recovery of metal ions from acid mine drainage using lignite a low cost sorbent. J Hazard Mater 137:1545–1553

    Article  Google Scholar 

  • Motsi T, Rowson NA, Simmons MJH (2009) Adsorption of heavy metals from acid mine drainage by natural zeolite. Int J Miner Process 92(1–2):42–48

    Article  Google Scholar 

  • Murayama N, Tanabe M, Yamamoto H, Shibata J (2003) Reaction, mechanism and application of various zeolite syntheses from coal fly ash. Mater Trans 44(12):2475–2480

    Article  Google Scholar 

  • Musyoka NM, Petrik LF, Balfour G, Ndungu P, Gitari WM, Hums E (2012) Synthesis of zeolites from coal fly ash: application of a statistical experimental design. Res Chem Intermed 38:471–486

    Article  Google Scholar 

  • Musyoka NM, Petrik LF, Fatoba OO, Hums E (2013) Synthesis of zeolites from coal fly ash using mine waters. Miner Eng 53:9–15

    Article  Google Scholar 

  • Nascimento CWA, Amarasiriwardena D, Xing B (2006) Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environ Pollut 140:114–123

    Article  Google Scholar 

  • Neculita CM, Yim GJ, Lee GY, Ji SW, Jung JW, Park HS, Song H (2011) Comparative effectiveness of mixed organic substrates to mushroom compost for treatment of mine drainage in passive bioreactors. Chemosphere 83:76–82

    Article  Google Scholar 

  • Nyamapfene KW (1991) Soils of Zimbabwe. Nehanda Publ (Pvt), Harare

    Google Scholar 

  • Nyquist J, Greger M (2009) A field study of constructed wetlands for preventing and treating acid mine drainage. Ecol Eng 35(5):630–642

    Article  Google Scholar 

  • Prasad B, Kumar H (2015) Treatment of acid mine drainage using a fly ash zeolite column. Mine Water Environ. doi:10.1007/s10230-015-0373-1

    Google Scholar 

  • Prasad B, Mortimer R (2011) Treatment of acid mine drainage using fly ash zeolite. Water Air Soil Pollut 218:667–679

    Article  Google Scholar 

  • Querol X, Moreno N, Umaña JC, Alastuey A, Hernández E, López-Soler A, Plana F (2002) Synthesis of zeolites from fly ash: an overview. Int J Coal Geol 50:413–423

    Article  Google Scholar 

  • Rahimi S, Moattari RM, Rajabi L, Derakhshan AA, Keyhani M (2014) Iron oxide/hydroxide (α,γ-FeOOH) nanoparticles as high potential adsorbents for lead removal from polluted aquatic media. J Ind Eng Chem 23:33–43

    Article  Google Scholar 

  • Robinson-Lora MA, Brennan RA (2009) Efficient metal removal and neutralization of acid mine drainage by crab-shell chitin under batch and continuous-flow conditions. Bioresour Technol 100:5063–5071

    Article  Google Scholar 

  • Ruziwa DT, Chaukura N, Gwenzi W, Pumure I (2015) Removal of Zn2+ and Pb2+ ions from aqueous solution using sulphonated waste polystyrene. J Environ. Chem Eng 3:2528–2537

    Google Scholar 

  • Sahoo PK, Tripathy MK, Panigrahi SK, Equeenuddin MD (2012) Evaluation of the use of an alkali modified fly ash as a potential adsorbent for the removal of metals from acid mine drainage. Appl Water Sci 3:567–576

    Article  Google Scholar 

  • Salomons W (1995) Environmental impact of metals derived from mining activities: Processes, predictions, prevention. J Geochem Explor 52:5–23

    Article  Google Scholar 

  • Sheoran AS, Sheoran V (2006) Heavy metal removal mechanisms of acid mine drainage in wetlands: a critical review. Miner Eng 19:105–116

    Article  Google Scholar 

  • Shim YS, Kim YK, Kong SH, Rhee SW, Lee WK (2003) The adsorption characteristics of heavy metals by various particle sizes of MSWI bottom ash. Waste Manage 23(9):851–857

    Article  Google Scholar 

  • Song H, Yim GJ, Ji SW, Neculita CM, Hwang T (2012) Pilot-scale passive bioreactors for the treatment of acid mine drainage: Efficiency of mushroom compost vs. mixed substrates for metal removal. J Environ Manag 30(111):150–158

  • Stumm W, Morgan JJ (1996) Aquatic chemistry. 3rd edit. Wiley, New York City

    Google Scholar 

  • Trumm D, Pope J (2015) Passive treatment of neutral mine drainage at a metal mine in New Zealand using an oxidizing system and slag leaching bed. Mine Water Environ 34(4):430–441

    Article  Google Scholar 

  • Truong P (1999) Vetiver grass technique for mine tailings rehabilitation. Proc, 1st Asia Pacific Conf on Ground and Water Bio-engineering for Erosion Control and Slope Stabilization, Manila

  • Truong P, Baker D (1996) Vetiver grass for the stabilization and rehabilitation of acid sulfate soils. Proc, 2nd National Conf on Acid Sulfate Soils, Coffs Harbour, Australia, pp 196–198

  • Uster B, O’Sullivan AD, Ko SY, Evans A, Pope J, Trumm D, Caruso B (2015) The use of mussel shells in upward-flow sulfate-reducing bioreactors treating acid mine drainage. Mine Water Environ 34(4):442–454

    Article  Google Scholar 

  • Wang SB, Zhu ZH (2007) Humic acid adsorption on fly ash and its derived unburned carbon. J Carbon Interface Sci 315:41–46

    Article  Google Scholar 

  • Wingenfelder U, Hansen C, Furrer G, Schulin R (2005) Removal of heavy metals from mine waters by natural zeolites. Environ Sci Technol 39:4606–4613

    Article  Google Scholar 

  • Zhang M, Wang H (2014) Organic wastes as carbon sources to promote sulfate reducing bacterial activity for biological remediation of acid mine drainage. Miner Eng 69:81–90

    Article  Google Scholar 

Download references

Acknowledgements

We thank the technical staff from the Department of Soil Science and Agricultural Engineering for laboratory support. Author contributions: WG & CCM originated the idea; CCM conducted research as part of BSc Honours thesis research under supervision of WG, analysed the data, and drafted the manuscript. WG finalized the manuscript. WG, CM, NC, and TB, all contributed to experimental design, data interpretation, and manuscript compilation. This research was solely funded by the authors, and received no additional external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willis Gwenzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gwenzi, W., Mushaike, C.C., Chaukura, N. et al. Removal of Trace Metals from Acid Mine Drainage Using a Sequential Combination of Coal Ash-Based Adsorbents and Phytoremediation by Bunchgrass (Vetiver [Vetiveria zizanioides L]). Mine Water Environ 36, 520–531 (2017). https://doi.org/10.1007/s10230-017-0439-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-017-0439-3

Keywords

Navigation