Skip to main content
Log in

Using Acid Mine Drainage to Recover a Coagulant from Water Treatment Residuals

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

We evaluated the recovery of aluminum from water treatment residuals by acidification using acidic coal mine drainage as an extraction solution. The water treatment residuals had Al and total Fe concentrations of 1.2 and 1.3%, respectively, based on mass. The influence of contact time of the mine water with the water treatment residuals and the percent of excess sulfate were assessed. The results showed that 28 min of contact and 100% of excess sulfate allowed recovery of >90% of the Al. Color was reduced from 25.9 to 0.8 total color units (TCU) and turbidity was reduced from 6 to 0 nephelometric turbidity units (NTU). The recovered coagulant performed appropriately in water treatment tests, based on physical–chemical parameters. The only parameter that requires more attention is antimony, which was close to the maximum concentration limits for drinking water.

Zusammenfassung

Die Rückgewinnung von Aluminium aus Wasserbehandlungsrückständen durch Übersäuerung mit sauren Grubenwässern als Lösungskonzept für die Extraktion wird bewertet. Die Wasserbehandlungsrückstände hatten Al- und Feges.-Gehalte von 1,2 bzw. 1,3%. Der Einfluss der Einwirkungszeit des Grubenwassers auf die Wasserbehandlungsrückstände und der prozentuelle Sulfatüberschuss wurden ermittelt. Die Ergebnisse zeigten, dass bei 28 Minuten Einwirkungszeit und 100% Sulfatüberschuss ein Ausbringen von mehr als 90% des Aluminiums möglich ist. Die Färbung wurde von 25,9 auf 0,8 Gesamtfarbeinheiten (TCU) und die Trübung von 6 auf 0 nephelometrische Trübungseinheiten (NTU) reduziert. Das rückgewonnene Flockungsmittel bewährte sich bei Wasserbehandlungsversuchen basierend auf physikalisch-chemischen Parametern. Der einzige Parameter der mehr Aufmerksamkeit verlangt ist Antimon. Dieser liegt nahe an der zulässigen Maximalkonzentration für Trinkwasser.

利用酸性废水从废水处理残渣中回收凝结剂

评价了煤矿酸性废水酸化废水处理残渣提取铝的可行性。废水处理残渣内铝和铁的质量含量分别为1.2%和1.3%。分析了矿山废水与废水处理残渣接触时间和多余硫酸盐百分比对金属回收率的影响。结果表明,28分钟的接触时间和100%的多余硫酸盐能使铝回收率达90%,色度由25.9TCU减小至0.8TCU,浊度由6 NTU减少至0 NTU。通过控制物理-化学参数,回收凝结剂过程运行良好。唯一值得注意的参数是锑,它接近饮用水标准上限值。

Resumen

Evaluamos la recuperación de aluminio desde los residuos de tratamiento de aguas por acidificación utilizando drenaje ácido de minas como solución extractante. Los residuos del tratamiento de agua tenían concentraciones de Al y de Fe total de 1,2 y 1,3%, respectivamente, en masa. Se estudiaron la influencia del tiempo de contacto entre el agua de mina y las aguas tratadas y el porcentaje de exceso de sulfato. Los resultados mostraron que 28 minutos de contacto y 100% de exceso de sulfato permitieron recuperar más del 90% de Al. El color fue reducido desde 25,9 a 0,8 unidades de color total (TCU) y la turbidez se redujo desde 6 a 0 unidades nefelométricas de turbidez (NTU). Basado en los parámetros fisicoquímicos, la recuperación del coagulante funcionó adecuadamente en los tests con aguas tratadas. El único parámetro que requiere más atención es antimonio cuya concentración estuvo cercana a la del límite máximo para agua de consumo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • ASCE (American Society of Civil Engineers), AWWA (American Water Works Association) (1996) Technology transfer handbook: management of water treatment plant residuals. US EPA, New York City

    Google Scholar 

  • Bishop M, Rolan A, Bailey T, Cornwell D (1987) Testing of alum recovery for solids reduction and re-use. J Am Water Work Assoc 79:76–83

    Google Scholar 

  • Blodau C (2006) A review of acidity generation and consumption in acidic coal mine lakes and their watersheds. Sci Total Environ 369:307–332

    Article  Google Scholar 

  • Bocanegra-García G, Carrillo-Chávez A (2003) Hydro-geochemical behavior of bicarbonate and sulfate ions leaching from a sulfide-poor silver mine in central Mexico: potential indicator of acid mine drainage. Bull Environ Contam Toxicol 71:1222–1229

    Article  Google Scholar 

  • Brasil (2011) Portaria (Ordinance) no 2914, de 12 de dezembro de 2011: Dispõe sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. Ministério da Saúde, Brasil

  • Campaner VP, Luiz-Silva W (2009) Processos físico-químicos em drenagem ácida de mina em mineração de carvão no sul do Brasil. Quim Nova 32:146–152

    Article  Google Scholar 

  • Cornwell D, Zoltek J Jr (1977) Recycling of alum used for phosphorus removal in domestic wastewater treatment. J Water Pollut Control Fed 49:600–612

    Google Scholar 

  • de Freitas JG, Ferreira Filho SS, Piveli RP (2005) Viabilidade técnica e econômica da regeneração de coagulantes a partir de lodos de estações de tratamento de água. Eng Sanit e Ambient 10:137–145

    Article  Google Scholar 

  • Hakkou R, Benzaazoua M, Bussière B (2008) Acid Mine drainage at the abandoned Kettara Mine (Morocco): 2. mine waste geochemical behavior. Mine Water Environ 27:160–170

    Article  Google Scholar 

  • Howe J, Hand D, Crittenden J, Trussell RR, Tchobanoglous G (2012) Principles of water treatment. Wiley, Hoboken

    Google Scholar 

  • Hughes TA, Gray NF (2013) Co-treatment of acid mine drainage with municipal wastewater: performance evaluation. Environ Sci Pollut Res 20:7863–7877

    Article  Google Scholar 

  • Instituto Brasileiro de Geografia e Estatística (2008) Pesquisa Nacional de Saneamento Básico. http://www.ibge.gov.br/home/estatistica/populacao/condicaodevida/pnsb2008/PNSB_2008.pdf. Accessed 10 Aug 2014

  • Jiménez B, Martínez M, Vaca M (2007) Alum recovery and wastewater sludge stabilization with sulfuric acid. Water Sci Technol 56:133–141

    Article  Google Scholar 

  • Kaggwa RC, Mulalelo CI, Denny P, Okurut TO (2001) The impact of alum discharges on a natural tropical wetland in uganda. Water Res 35:795–807

    Article  Google Scholar 

  • Keeley J, Jarvis P, Judd SJ (2012) An economic assessment of coagulant recovery from water treatment residuals. Desalination 287:132–137

    Article  Google Scholar 

  • Keeley J, Jarvis P, Judd SJ (2014) Coagulant recovery from water treatment residuals: a review of applicable technologies. Crit Rev Environ Sci Technol 44:2675–2719

    Article  Google Scholar 

  • Kondash AJ, Warner NR, Lahav O, Vengosh A (2014) Radium and barium removal through blending hydraulic fracturing fluids with acid mine drainage. Environ Sci Technol 48:1334–1342

    Article  Google Scholar 

  • Lenter CM, McDonald LM, Skousen JG, Ziemkiewicz PF (2002) The effects of sulfate on the physical and chemical properties of actively treated acid mine drainage floc. Mine Water Environ 21:114–120

    Article  Google Scholar 

  • Masschelein WJ, Devleminck R, Genot J (1985) The feasibility of coagulant recycling by alkaline reaction of aluminium hydroxide sludges. Water Res 19:1363–1368

    Article  Google Scholar 

  • Okuda T, Nishijima W, Sugimoto M, Saka N, Nakai S, Tanabe K, Ito J, Takenaka K, Okada M (2014) Removal of coagulant aluminum from water treatment residuals by acid. Water Res 60:75–81

    Article  Google Scholar 

  • Oliveira EMS, Machado SQ, Holanda JNF (2004) Caracterização de resíduo (lodo) proveniente de estação de tratamento de águas visando sua utilização em cerâmica vermelha. Cerâmica 316:324–330

    Article  Google Scholar 

  • Rice E, Baird R, Eaton A, Clesceri L (2012) Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Assoc, Washington

    Google Scholar 

  • Rodrigues M, Lemma A (2014) Experimental design and process optimization, 1st edn. CRC Press, New York City

    Google Scholar 

  • Stendahl K, Färm C, Fritzdorf I, Ulmert H (2006) The REAL process: a process for recycling sludge from water works. Water Sci Technol 54:235–242

    Article  Google Scholar 

  • Strosnider WH, Winfrey BK, Nairn RW (2011) Alkalinity generation in a novel multi-stage high-strength acid mine drainage and municipal wastewater passive co-treatment system. Mine Water Environ 30:47–53

    Article  Google Scholar 

  • World Health Organization (2011) Guidelines for drinking-water quality, 4th edn. Gutenberg, Geneva

    Google Scholar 

Download references

Acknowledgements

We thank the National Council for Research and Development of Brazil (Proposal 455547/2012-2) for their financial support and the staff of the water treatment plant at the Orleans/SC and the Criciúma coal mine for supplying samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Everton Skoronski.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skoronski, E., Ohrt, A.C., de Oliveira Cordella, R. et al. Using Acid Mine Drainage to Recover a Coagulant from Water Treatment Residuals. Mine Water Environ 36, 495–501 (2017). https://doi.org/10.1007/s10230-016-0423-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-016-0423-3

Keywords

Navigation