Skip to main content
Log in

Prediction of the Height of the Water-Conducting Zone Above the Mined Panel in Solid Backfill Mining

Voraussage der Höhe der wasserleitenden Zone über Abbauflächen mit Feststoffversatz

Predicción de la altura de la zona conductora de agua, ubicada arriba de la zona minera con relleno sólido

采空区固体充填开采条件下的导水裂隙带高度预测

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Numerous water inrush disasters have been associated with Chinese coal mines over the past 30 years. Accordingly, solid backfill mining (SBM) has been widely adopted to extract coal resources from beneath aquifers to reduce the magnitude and scope of overburden failure. Therefore, accurate determination of the height of the water-conducting zone associated with SBM is particularly important. The primary factors influencing development of water-conducting zones within solid backfill mines have been quantified in the current study, based on overburden movement and deformation characteristics. Numerical simulation has been used to evaluate the height of water conducting zones with respect to mine heights and backfill ratios. The results have been analyzed via multiple regression, leading to the development of a predictive equation. Field trials undertaken as part of the current study indicate a high level of accuracy with the developed equation.

Zusammenfassung

In den letzten 30 Jahren ereigneten sich in chinesischen Kohlenbergbauen zahlreiche katastrophale Wassereinbrüche. Deshalb wurden vielfach Feststoffversatztechnologien (SBM) eingeführt, um Kohle unter Aquiferen zu gewinnen und damit das Ausmaß und die Reichweite von Hangendbrüchen zu verringern. Deshalb ist die genaue Berechnung der Höhe der durch Kohlenabbau unter SBM-Einsatz erwarteten wasserleitenden Zone(HWCZ) besonders wichtig. Basierend auf Bewegungen und Deformationseigenschaften des Hangenden werden in dieser Studie die primären Faktoren quantifiziert, welche die Entwicklung der wasserleitenden Zonen in Gruben mit Feststoffversatz beeinflussen. Mit numerischer Simulation wurde die Höhe der wasserleitenden Zone in Bezug auf die abgebaute Kohlemächtigkeit und die Versatzkennziffer (Versatzmächtigkeit unter Hangendauflast konsolidiert gegen abgebaute Kohlemächtigkeit) berechnet. Die Resultate wurden mit multipler Regression ausgewertet, was zur Entwicklung einer prognostischen Gleichung führte. Feldversuche, welche diese Studie begleiteten, deuten eine hohes Genauigkeitsniveau der entwickelten Gleichung an.

Resumen

En China, numerosos desastres de irrupciones de agua han sido asociados a las minas de carbón en los últimos 30 años. Consecuentemente, el relleno de las minas con sólidos (SBM) ha sido ampliamente adoptado para extraer los recursos de carbón en zonas de acuíferos para reducir la magnitud y alcance del manejo de escombreras. Esta es la razón por la que medidas precisas de la altura de la zona conductora de agua (HWCZ) asociada con SBM resultan particularmente importantes. Los factores primarios que influencian el desarrollo de zonas conductoras de agua dentro de las minas rellenas con sólidos han sido cuantificados en este estudio, basado en el movimiento de escombreras y las características de deformación. La simulación numérica ha sido usada para evaluar la altura de las zonas de conducción de agua con respecto a las alturas de las minas y las relaciones de relleno. Los resultados han sido analizados por regresión múltiple, permitiendo el desarrollo de una ecuación predictiva. Los ensayos de campo realizados como parte del presente estudio indican un alto nivel de precisión con la ecuación desarrollada.

摘要

在过去的30多年里,中国发生了多次煤矿突水事故。固体充填开采(solid backfill mining,SBM)) 能够有效地减少顶板覆岩破坏程度,已被广泛用于含水层下煤炭开采。因此,准确预测充填开采条件下导水裂隙带高度尤为重要。本文利用顶板覆岩运动与变形规律,定量分析了影响导水裂隙带发育高度的各种因素,采用数值模拟手段研究了回采高度、采空区固体充填比与导水裂隙带高度之间的变化关系,通过多元回归方法建立了导裂隙带高度预测公式。野外试验证明了充填开采条件下导水裂隙带高度预测公式的适用性和可靠性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bai M, Elsworth D (1990) Some aspects of mining under aquifers in China. Min Sci Tech 10:81–91

    Article  Google Scholar 

  • Bai QS, Tu SH, Yuan Y, Wang FT (2013) Back analysis of mining induced responses on the basis of goaf compaction theory. J China Univ Min Technol 42(3):355–362

    Google Scholar 

  • Bian ZF, Miao XX, Lei SG, Chen SE (2012) The challenges of reusing mining and mineral-processing wastes. Science 373:701–703

    Google Scholar 

  • Chuen LT (1979) Practice and knowledge of coal mining under water bodies. In: Proceedings 10th World Mining Congress Expo, Istanbul, Turkey, vol 3, pp 1–15

  • Dahl HD, Von Schonfeld HA (1976) Rock mechanics element of coal mine design. In: Proceedings 17th US Symp. on Rock Mechanics, Univ of Utah, ISBN: 0-89520-046-5, pp 31–39

  • Du JP, Wang LH (2005) Special coal mining methods. China University of Mining and Technology Press, Xuzhou

    Google Scholar 

  • Fawcett RJ, Hibberd S, Singh RN (1986) Analytic calculations of hydraulic conductivities above longwall coal faces. Int J Mine Water 5(1):45–60

    Article  Google Scholar 

  • Hasenfus GJ, Johnson KL, Su DWH (1998) A hydro geo-mechanical study of overburden aquifer response to longwall mining. In: Proceedings of 7th International Conf on Ground Control in Mining, West Virginia Univ, Morgantown, WV, USA, pp 149–162

  • Hu XJ, Li WP, Cao DT, Liu MC (2012) Index of multiple factors and expected height of fully mechanized water flowing fractured zone. J China Coal Soc 37(4):613–620

    Google Scholar 

  • Huang YL, Zhang JX, An BF (2011a) Overlying strata movement law in fully mechanized coal mining and backfilling longwall face by similar physical simulation. J Min Sci 47(5):618–627

    Article  Google Scholar 

  • Huang YL, Zhang JX, Zhang Q (2011b) Backfilling technology of substituting waste and fly ash for coal underground in China coal mining area. Environ Eng Manag J 10(6):769–775

    Google Scholar 

  • Islam RM, Hayashi D, Kamruzzaman ABM (2009) Finite element modeling of stress distributions and problems for multi-slice longwall mining in Bangladesh, with special reference to the Barapukuria coal mine. Int J Coal Geol 78(2):91–109

    Article  Google Scholar 

  • Itasca (2004) UDEC version 4.0, user’s manual. Itasca Consulting Group Inc, Minneapolis

    Google Scholar 

  • Li J, Zhang JX, Huang YL, Zhang Q, Xu JM (2012) An investigation of surface deformation after fully mechanized solid back fill mining. Int J Min Sci Technol 22(4):453–457

    Article  Google Scholar 

  • Liu T (1981a) Coal mine ground movement and strata failure. Coal Industry Publ House, Beijing

    Google Scholar 

  • Liu TQ (1981b) Surface movements, overburden failure and its application. Coal Industry Press, Beijing

    Google Scholar 

  • Miao XX, Zhang JX, Guo GL (2010a) Method and technology of fully-mechanized coal mining with solid waste filling. China University of Mining and Technology Press, Xuzhou

    Google Scholar 

  • Miao XX, Zhang JX, Guo GL (2010b) Study on waste-filling method and technology in fully-mechanized coal mining. J China Coal Soc 35:1–6

    Google Scholar 

  • Miao XX, Cui XM, Wang JN, Xu JL (2011) The height of fractured water-conducting zone in undermined rock strata. Eng Geol 120:32–39

    Article  Google Scholar 

  • Min KB, Rutqvist J, Tsang CF, Jing L (2004) Stress-dependent permeability of fractured rock masses: a numerical study. Int J Rock Mech Min Sci 41:1191–1210

    Article  Google Scholar 

  • Pappas DM, Mark C (1993) Behavior of simulated longwall gob material. US Bureau of Mines, Washington

    Google Scholar 

  • Peng SS (1992) Surface subsidence engineering. SME, Littleton

    Google Scholar 

  • Peng SS, Chiang HS (1984) Longwall mining. Wiley, New York City

    Google Scholar 

  • SPSS (2004) SPSS software version 13.0. SPSS Inc, Chicago

    Google Scholar 

  • Styler N (1984) Prediction of inter-strata movements above longwall faces. In: Proceedings of 25th US Symposium on Rock Mechanics, Paper No. 84-0651, Evanston, IL

  • Tao QF, Ghassemi A, Ehlig-Economides CA (2011) A fully coupled method to model fracture permeability change in naturally fractured reservoirs. Int J Rock Mech Min Sci 48:259–268

    Article  Google Scholar 

  • Wang YN (1982) Prediction of the height of water conducting fissured zone by amazing the stress distribution in overlying strata. J China Coal Soc 1:92–99

    Google Scholar 

  • Zhang YJ, Li FM (2011) Monitoring analysis of fissure development evolution and height of overburden failure of high tension fully-mechanized caving mining. Chin J Rock Mech Eng 30(S1):2994–3001

    Google Scholar 

  • Zhang JC, Shen BH (2004) Coal mining under aquifers in China: a case study. Int J Rock Mech Min Sci 41:629–639

    Article  Google Scholar 

  • Zhang J, Zhang Y, Liu T (1997) Rock mass permeability and coal mine water inrush. Geological Publ House, Beijing

    Google Scholar 

  • Zhang JX, Miao XX, Guo GL (2009) Development status of backfilling technology using raw waste in coal mining. J Min Saf Eng 26(4):395–401

    Google Scholar 

  • Zhang JX, Wu Q, Huang YL (2010) Strata pressure behavior by raw waste backfilling with fully-mechanized coal mining technology. J China Coal Soc 35(8):1–4

    Google Scholar 

  • Zhou Y (1991) Evaluating the impact of multi-seam mining on recoverable coal reserves in an adjacent seam. Virginia Division of Mineral Resources, Virginia Department of Mines, Minerals and Energy, Publ. 104

  • Zhou YJ, Chen Y, Zhang JX, He Q (2012) Control principle and technology of final compression ratio of backfilling material. J Min Saf Eng 3:351–356

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Fundamental Research Funds for the Central Universities (China University of Mining and Technology) under Grant 2014ZDPY02 and Qing Lan Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiqiang Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Jiang, H., Deng, X. et al. Prediction of the Height of the Water-Conducting Zone Above the Mined Panel in Solid Backfill Mining. Mine Water Environ 33, 317–326 (2014). https://doi.org/10.1007/s10230-014-0310-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-014-0310-8

Keywords

Navigation