Skip to main content
Log in

Treatment of Acidic and Neutral Metal-Laden Mine Waters with Bone Meal Filters

Behandlung von sauren und neutralen metallhaltigen Grubenwässern mit Knochenmehlfiltern

Tratamiento de aguas de mina ácidas y neutras con carga metálica utilizando filtros de harina de huesos

骨粉过滤法处理酸性和中性高金属荷载矿井废水

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Bone meal was used to treat two different mine waters: acidic (pH 4.5) mine water containing high concentrations of Fe and Al and neutral/slightly alkaline (pH 7) mine water. Original primary contaminants in both waters were Pb and Zn. The contaminants were dissolved in the acidic mine water and mostly suspended in the neutral mine water. Flow through the filter treating the acidic mine water was relatively low (0.1 L/min), but increased towards the end of the test period. Removal of Pb and Cu was very good in the acidic mine water (around 80 %); removal of Zn was slightly less (60 %) due to the final pH (≈6–6.5). Flow through the filter treating the neutral mine water was initially significantly higher (5 L/min) and the removal of Pb and Zn was less compared to the acidic mine water (50 % for Pb and 35 % for Zn). The major reason for the difference in metal removal in the two mine waters was the difference in Fe and Al sorption sites, flow rate, and pH; in order for the bone meal to dissolve and form metal phosphate, the pH has to be <7.

Zusammenfassung

Zur Behandlung verschiedener Grubenwässer wurde Knochenmehl eingesetzt. Zum Einen wurde saures Grubenwasser (pH 4.5) mit hohen Konzentrationen an Fe und Al und zum Anderen neutrales/leicht alkalisches Grubenwasser (pH 7) behandelt. Beide Grubenwässer waren mit Pb und Zn belastet. Die beiden Metalle (Pb, Zn) waren im sauren Grubenwasser gelöst und lagen im neutralen Grubenwasser suspendiert vor. Der Durchfluss des Filters zur Behandlung des sauren Grubenwasser war vergleichsweise niedrig (0.1 L/min) und wurde im Verlauf der Versuche erhöht. Der Rückhalt von Cu und Pb aus dem sauren Grubenwassers war sehr effektiv (ca. 80 %), wobei Zn weniger zurückgehalten wurde (60 %). Der Endwert des pH lag bei etwa 6–6.5. Die Durchflussrate des Filters zur Behandlung des neutralen Grubenwassers war wesentlich höher und lag bei 5 L/min. Das Rückhaltevermögen lag bei nur 50 % für Pb und 35 % für Zn. Der wesentliche Grund für das unterschiedliche Rückhaltevermögen liegt in den unterschiedlichen Adsorptionsplätzen für Fe und Al, dem spezifischem Durchfluss und dem pH-Wert im Zusammenhang mit der Fähigkeit des Knochenmehls Metall-Phosphate zu bilden. Für diese Reaktion muss der pH-Wert unter 7 liegen.

Resumen

Se utilizó harina de huesos para tratar dos diferentes aguas de minas: aguas de mina ácidas (pH 4.5) conteniendo altas concentraciones de Fe y Al y aguas de mina neutras/ligeramente alcalinas (pH 7). Los contaminantes primarios en ambas fueron Pb y Zn. Los contaminantes estaban disueltos en las aguas ácidas y principalmente suspendidas en las aguas neutras. El flujo del agua ácida a través del filtro fue relativamente bajo (0,1 L/min) pero se incrementó hacia el final del período estudiado. La remoción de Pb y Cu fue muy Buena en el agua ácida (cerca del 80 %); la remoción de Zn fue ligeramente menor (60 %) debido al pH final (≈6–6,5). El flujo del agua neutra a través del filtro fue significativamente mayor (5 L/min) y la remoción de Pb y Zn fueron menores comparados con las obtenidas para el agua ácida (50 % para Pb y 35 % para Zn). Las principales razones para la diferencia en la remoción metálica en las dos aguas de minas, fueron la diferencia en los sitios de sorción de Fe y Al, la velocidad de flujo y el pH; para que la harina de huesos se disuelva y forme fosfatos metálicos, el pH tiene que ser menor que 7.

抽象

本研究将骨粉用于处理两种不同类型矿井废水:富铁和铝的酸性(pH 4.5)矿井水、中性/弱碱性(pH 7)矿井水。两类矿井水主要本底污染物为铅和锌。污染物在酸性矿井水中溶解而在中性矿井水中悬浮。酸性矿井水流经过滤器的最初出流流量较低 (0.1 L/min),过滤处理后期出流流量增加。该过滤系统的酸性矿井水铅和铜去除效果好(去除率约80 %),锌去除效果降低(去除率60 %,由于pH升已至6 ~ 6.5)。中性矿井水流经过滤器的最初出流流量较高(5 L/min),铅和锌去除率分别50 %和35 %,过滤处理效率较酸性矿井水差。两种矿井水过滤处理效果不同的主要原因在于铁和铝的吸附位、流量和pH值不同,骨粉溶解(铁和铝)形成金属磷酸盐,并要求pH值小于7。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Halim SH, Shehata AMA (2003) Removal of lead ions from industrial waste water by different types of natural materials. Water Res 37:1678–1683

    Article  Google Scholar 

  • Ahlquist M (2006) Utredning av benmjöls förmåga att reducera tungmetaller i lakvatten vid avfallsanläggningen Spillepeng i Malmö. SWECO VIAK AB, 1230573 000 (in Swedish)

  • Azab MS, Peterson PJ (1989) The removal of cadmium from water by the use of biological sorbents. Water Sci Technol 21:1705–1706

    Google Scholar 

  • Bäckström M, Sartz L (2011) Mixing of acid rock drainage with alkaline ash leachates–fate and immobilisation of trace elements. Water Air Soil Poll 222:377–389

    Article  Google Scholar 

  • Benjamin MM, Sletten RS, Bailey RP, Bennett T (1996) Sorption and filtration of metals using iron-oxide-coated sand. Water Res 30(11):2609–2620

    Article  Google Scholar 

  • Cheung CW, Porter JF, McKay G (2002) Removal of Cu(II) and Zn(II) ions by sorption onto bone char using batch agitation. Langmuir 18(3):650–656

    Article  Google Scholar 

  • Cranell BS, Eighmy TT, Krzanowski JE, Eusden JD Jr, Shaw EL, Francis CA (2000) Heavy metal stabilization in municipal solid waste combustion bottom ash using soluble phosphate. Waste Manag 20:135–148

    Article  Google Scholar 

  • Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology. Wiley, New York

    Google Scholar 

  • Fahlqvist L (2012) Filtrering av vatten från Lovisagruvan genom obehandlad respektive järnoxyhydroxidbelagd anrikningssand från Stråssa i syfte att minska halterna av zink och bly. BSc thesis, Örebro Univ, Örebro, Sweden (in Swedish)

  • Frogner-Kockum P, Bendz D (2007) Benmjöls kapacitet som filtermaterial för deponitillämpning. Statens Geotekniska Institut, SGI, 2-0705-0324 (in Swedish)

  • Frogner-Kockum P, Hemström K (2009) Benmjöl som stabiliseringsåtgärd i förorenad glasbruksjord. Uppdrag 13751, 2009-01-31, Statens Geotekniska Institut, Linköping (in Swedish)

  • Frogner-Kockum P, Benz D, Suèr P (2006) Kapacitet av benmjöl som sorptionsfilter. Statens Geotekniska Institut (SGI) 2-0604-0254 (in Swedish)

  • Hazen A (1892) Some physical properties of sands and gravels, with special reference to their use in filtration. 24th annual report, MA State Board of Health public doc, vol 34, pp 539–556, Boston, MA, USA

  • Hodson ME, Valsami-Jones E, Cotter-Howells JD (2000) Bone meal additions as a remediation treatment for metal contaminated soil. Environ Sci Technol 34(16):3501–3507

    Article  Google Scholar 

  • Hodson ME, Valsami-Jones E, Cotter-Howells JD, Dubbin WE, Kemp AJ, Thornton I, Warren A (2001) Effect of bone meal (calcium phosphate) amendments on metal release from contaminated soils–a leaching column study. Environ Pollut 112:233–243

    Article  Google Scholar 

  • Karlsson S (2009) Resultat från provtagning i Lovisagruvan med omnejd 2009-07-07. Bergskraft PM (in Swedish)

  • Malmros M (2004) Rena avloppsvatten från tungmetaller med hjälp av benmjöl. MSc thesis, Lund Univ, Lund, Sweden (in Swedish)

  • Modin H, Persson K, Andersson A, van Praagh M (2011) Removal of metals from landfill leachate by sorption to activated carbon, bone meal and iron fines. J Hazard Mater 189:749–754

    Article  Google Scholar 

  • Nordtest (1995) Solid waste, granular inorganic material: availability test. NT ENVIR 003

  • Nordtest (1999) Solid waste, granular inorganic material: oxidised availability test. NT ENVIR 006

  • Nwachukwu OI, Pulford ID (2008) Comparative effectiveness of selected adsorbant materials as potential amendments for the remediation of lead-, copper- and zinc-contaminated soil. Soil Use Manag 24(2):199–207

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1990) Users guide to PHREEQC (vers 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. USGS Water Resources Investigations Report 99-4259, Washington DC, USA

  • Puigdomenech I (2010) MEDUSA–make equilibrium diagrams using sophisticated algorithms. Software vers 6 Dec 2010. Royal Institute of Technology, Stockholm

    Google Scholar 

  • Rieuwerts JS, Austin S, Harris EA (2009) Contamination from historic metal mines and the need for non-invasive remediation techniques: a case study from southwest England. Environ Monit Assess 148:149–158

    Article  Google Scholar 

  • Ryan JA, Zhang P, Hesterberg D, Chou J, Sayers DE (2001) Formation of chloropyromorphite in a lead-contaminated soil amended with hydroxyapatite. Environ Sci Technol 35(18):3798–3803

    Article  Google Scholar 

  • Sartz L (2010) Alkaline by-products as amendments for remediation of historic mine sites. Örebro Studies in Environmental Science 15, PhD Diss, Örebro Univ, Örebro, Sweden

  • Sneddon IR, Orueetxebarria M, Hodson ME, Schofield PF, Valsami-Jones E (2006) Field trial using bone meal amendments to remediate mine waste derived soil contaminated with zinc, lead and cadmium. Appl Geochem 23:2414–2424

    Article  Google Scholar 

  • Xu YP, Schwartz FW (1994) Lead immobilization by hydroxyapatite in aqueous solutions. J Contam Hydrol 15(3):187–206

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to Erik Larsson, Bergskraft Bergslagen AB, for field assistance and Viktor Sjöberg for performing the metal analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotta Sartz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sartz, L., Bäckström, M. Treatment of Acidic and Neutral Metal-Laden Mine Waters with Bone Meal Filters. Mine Water Environ 32, 293–301 (2013). https://doi.org/10.1007/s10230-013-0248-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-013-0248-2

Keywords

Navigation