Skip to main content
Log in

Reduction in the Resonance Error in Numerical Homogenization II: Correctors and Extrapolation

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper is the follow-up of Gloria (Math Models Methods Appl Sci 21(8):1601–1630, 2011). One common drawback among numerical homogenization methods is the presence of the so-called resonance error, which roughly speaking is a function of the ratio \(\frac{\varepsilon }{\rho }\), where \(\rho \) is a typical macroscopic lengthscale and \(\varepsilon \) is the typical size of the heterogeneities. In the present work, we make a systematic use of regularization and extrapolation to reduce this resonance error at the level of the approximation of homogenized coefficients and correctors for general non-necessarily symmetric stationary ergodic coefficients. We quantify this reduction for the class of periodic coefficients, for the Kozlov subclass of almost-periodic coefficients, and for the subclass of random coefficients that satisfy a spectral gap estimate (e.g., Poisson random inclusions). We also report on a systematic numerical study in dimension 2, which demonstrates the efficiency of the method and the sharpness of the analysis. Last, we combine this approach to numerical homogenization methods, prove the asymptotic consistency in the case of locally stationary ergodic coefficients, and give quantitative estimates in the case of periodic coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The number of sub-/superscripts may not ease the reading, and we encourage the reader to simply consider \(H_1=H_2=\rho \) everywhere, although we shall need all the parameters in the proof.

References

  1. A. Abdulle. On a priori error analysis of fully discrete heterogeneous multiscale FEM. Multiscale Model. Simul., 4:447–459, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Allaire. Homogenization and two-scale convergence. SIAM J. Math. Anal., 23:1482–1518, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Allaire and R. Brizzi. A multiscale finite element method for numerical homogenization. Multiscale Model. Simul., 4:790–812, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Arbogast. Numerical subgrid upscaling of two-phase flow in porous media. In Numerical treatment of multiphase flows in porous media (Beijing, 1999), volume 552 of Lecture Notes in Phys., pages 35–49. Springer, Berlin, 2000.

  5. I. Babuska and R. Lipton. \(L^2\)-global to local projection: an approach to multiscale analysis. Math. Models Methods Appl. Sci., 21(11):2211–2226, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Bensoussan, J.-L. Lions, and G. Papanicolaou. Asymptotic analysis for periodic structures, volume 5 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, 1978.

  7. X. Blanc and C. Le Bris. Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Netw. Heterog. Media, 5(1):1–29, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Bourgeat, A. Mikelić, and S. Wright. Stochastic two-scale convergence in the mean and applications. J. Reine Angew. Math., 456:19–51, 1994.

    MathSciNet  MATH  Google Scholar 

  9. W. E, B. Engquist, X. Li, W. Ren, and E. Vanden-Eijnden. Heterogeneous multiscale methods: A review. Commun. Comput. Phys., 2:367–450, 2007.

  10. W. E, P.B. Ming, and P.W. Zhang. Analysis of the heterogeneous multiscale method for elliptic homogenization problems. J. Amer. Math. Soc., 18:121–156, 2005.

  11. Weinan E. Principles of multiscale modeling. Cambridge University Press, Cambridge, 2011.

    MATH  Google Scholar 

  12. Y. Efendiev and T. Y. Hou. Multiscale finite element methods, volume 4 of Surveys and Tutorials in the Applied Mathematical Sciences. Springer, New York, 2009. Theory and applications.

  13. Y.R. Efendiev, T.Y. Hou, and X.H. Wu. Convergence of a nonconforming multiscale finite element method. SIAM J. Num. Anal., 37:888–910, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  14. A.-C. Egloffe, A. Gloria, J.-C. Mourrat, and T. N. Nguyen. Random walk in random environment, corrector equation, and homogenized coefficients: from theory to numerics, back and forth. IMA J. Num. Anal., 2014. doi:10.1093/imanum/dru010.

  15. FreeFEM. http://www.freefem.org/.

  16. A. Gloria. An analytical framework for the numerical homogenization of monotone elliptic operators and quasiconvex energies. Multiscale Model. Simul., 5(3):996–1043, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Gloria. An analytical framework for numerical homogenization - Part II: windowing and oversampling. Multiscale Model. Simul., 7(1):275–293, 2008.

    Article  MathSciNet  Google Scholar 

  18. A. Gloria. Reduction of the resonance error - Part 1: Approximation of homogenized coefficients. Math. Models Methods Appl. Sci., 21(8):1601–1630, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Gloria. Numerical approximation of effective coefficients in stochastic homogenization of discrete elliptic equations. M2AN Math. Model. Numer. Anal., 46(1):1–38, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Gloria. Numerical homogenization: survey, new results, and perspectives. Esaim. Proc., 37, 2012. Mathematical and numerical approaches for multiscale problem.

  21. A. Gloria and J.-C. Mourrat. Spectral measure and approximation of homogenized coefficients. Probab. Theory. Relat. Fields, 154(1), 2012.

  22. A. Gloria, S. Neukamm, and F. Otto. An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations. M2AN Math. Model. Numer. Anal., 2014. Special issue 2014: Multiscale problems and techniques.

  23. A. Gloria, S. Neukamm, and F. Otto. Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics. Invent. Math., 2014. DOI 10.1007/s00222-014-0518-z.

  24. A. Gloria and F. Otto. Quantitative results on the corrector equation in stochastic homogenization. arXiv:1409.0801.

  25. P. Henning and D. Peterseim. Oversampling for the Multiscale Finite Element Method. Multiscale Model. Simul., 11(4):1149–1175, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  26. T.Y. Hou and X.H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys., 134:169–189, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  27. T.Y. Hou, X.H. Wu, and Z.Q. Cai. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comput., 68:913–943, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  28. T.Y. Hou, X.H. Wu, and Y. Zhang. Removing the cell resonance error in the multiscale finite element method via a Petrov-Galerkin formulation. Comm. in Math. Sci., 2(2):185–205, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  29. V.V. Jikov, S.M. Kozlov, and O.A. Oleinik. Homogenization of Differential Operators and Integral Functionals. Springer-Verlag, Berlin, 1994.

    Book  Google Scholar 

  30. S. M. Kozlov, Averaging of differential operators with almost periodic rapidly oscillating coefficients. Mat. Sb. (N.S.), 107(149)(2):199–217, 317, 1978.

  31. H. Owhadi and L. Zhang. Metric-based upscaling. Comm. Pure Appl. Math., 60(5):675–723, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  32. H. Owhadi and L. Zhang. Localized bases for finite dimensional homogenization approximations with non-separated scales and high-contrast. Multiscale Model. Simul., 9(4):1373–1398, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Owhadi, L. Zhang, and L. Berlyand. Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization. ESAIM: Mathematical Modelling and Numerical Analysis, 2014.

  34. G.C. Papanicolaou and S.R.S. Varadhan. Boundary value problems with rapidly oscillating random coefficients. In Random fields, Vol. I, II (Esztergom, 1979), volume 27 of Colloq. Math. Soc. János Bolyai, pages 835–873. North-Holland, Amsterdam, 1981.

  35. M. Vogelius. A homogenization result for planar, polygonal networks. RAIRO Modél. Math. Anal. Numér., 25(4):483–514, 1991.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The first author acknowledges financial support from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2014-2019 Grant Agreement QUANTHOM 335410).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Gloria.

Additional information

Communicated by Philippe Ciarlet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gloria, A., Habibi, Z. Reduction in the Resonance Error in Numerical Homogenization II: Correctors and Extrapolation. Found Comput Math 16, 217–296 (2016). https://doi.org/10.1007/s10208-015-9246-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-015-9246-z

Keywords

Mathematics Subject Classification

Navigation