Skip to main content
Log in

Convergence of the Stochastic Euler Scheme for Locally Lipschitz Coefficients

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Stochastic differential equations are often simulated with the Monte Carlo Euler method. Convergence of this method is well understood in the case of globally Lipschitz continuous coefficients of the stochastic differential equation. However, the important case of superlinearly growing coefficients has remained an open question. The main difficulty is that numerically weak convergence fails to hold in many cases of superlinearly growing coefficients. In this paper we overcome this difficulty and establish convergence of the Monte Carlo Euler method for a large class of one-dimensional stochastic differential equations whose drift functions have at most polynomial growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Bally, D. Talay, The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the distribution function, Probab. Theory Relat. Fields 104(1), 43–60 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Duffie, P. Glynn, Efficient Monte Carlo simulation of security prices, Ann. Appl. Probab. 5(4), 897–905 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  3. Ĭ.Ī. Gīhman, A.V. Skorohod, Stochastic Differential Equations (Springer, New York, 1972). Translated from the Russian by Kenneth Wickwire, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 72.

    MATH  Google Scholar 

  4. P. Glasserman, Monte Carlo Methods in Financial Engineering (Springer, New York, 2004).

    MATH  Google Scholar 

  5. D.J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev. 43(3), 525–546 (2001) (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  6. D.J. Higham, X. Mao, A.M. Stuart, Strong convergence of Euler-type methods for nonlinear stochastic differential equations, SIAM J. Numer. Anal. 40(3), 1041–1063 (2002) (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Hutzenthaler, A. Jentzen, P.E. Kloeden, Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467(2130), 1563–1576 (2011).

    Article  MathSciNet  Google Scholar 

  8. A. Klenke, Probability Theory, Universitext (Springer, London, 2008). A comprehensive course. Translated from the 2006 German original.

    Book  Google Scholar 

  9. P.E. Kloeden, The systematic derivation of higher order numerical schemes for stochastic differential equations, Milan J. Math. 70, 187–207 (2002).

    Article  MathSciNet  Google Scholar 

  10. P.E. Kloeden, A. Neuenkirch, The pathwise convergence of approximation schemes for stochastic differential equations. LMS J. Comput. Math. 10, 235–253 (2007)

    MathSciNet  MATH  Google Scholar 

  11. P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, Berlin, 1992).

    MATH  Google Scholar 

  12. P.E. Kloeden, E. Platen, H. Schurz, Numerical Solution of SDE Through Computer Experiments, Universitext (Springer, Berlin, 1994).

    Book  MATH  Google Scholar 

  13. J.C. Mattingly, A.M. Stuart, D.J. Higham, Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise, Stoch. Process. Appl. 101(2), 185–232 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  14. G.N. Milstein, A method with second order accuracy for the integration of stochastic differential equations, Teor. Veroâtn. Ee Primen. 23(2), 414–419 (1978).

    MathSciNet  Google Scholar 

  15. G.N. Milstein, Numerical Integration of Stochastic Differential Equations (Kluwer Academic, Dordrecht, 1995).

    Google Scholar 

  16. G.N. Milstein, M.V. Tretyakov, Numerical integration of stochastic differential equations with nonglobally Lipschitz coefficients, SIAM J. Numer. Anal. 43(3), 1139–1154 (2005) (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Rößler, Runge–Kutta Methods for the Numerical Solution of Stochastic Differential Equations (Shaker Verlag, Aachen, 2003).

    MATH  Google Scholar 

  18. D.W. Stroock, Probability Theory, an Analytic View (Cambridge University Press, London, 1993).

    MATH  Google Scholar 

  19. L. Szpruch, Numerical approximations of nonlinear stochastic systems, Ph.D. thesis, University of Strathclyde, Glasgow, 2010.

  20. D. Talay, Probabilistic numerical methods for partial differential equations: elements of analysis, in Probabilistic Models for Nonlinear Partial Differential Equations (Springer, Berlin, 1996), pp. 148–196.

    Chapter  Google Scholar 

  21. L. Yan, The Euler scheme with irregular coefficients, Ann. Probab. 30(3), 1172–1194 (2002).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnulf Jentzen.

Additional information

Communicated by Peter Kloeden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutzenthaler, M., Jentzen, A. Convergence of the Stochastic Euler Scheme for Locally Lipschitz Coefficients. Found Comput Math 11, 657–706 (2011). https://doi.org/10.1007/s10208-011-9101-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-011-9101-9

Keywords

Mathematics Subject Classification (2000)

Navigation