Skip to main content
Log in

Continuous and Discrete Clebsch Variational Principles

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

The Clebsch method provides a unifying approach for deriving variational principles for continuous and discrete dynamical systems where elements of a vector space are used to control dynamics on the cotangent bundle of a Lie group via a velocity map. This paper proves a reduction theorem which states that the canonical variables on the Lie group can be eliminated, if and only if the velocity map is a Lie algebra action, thereby producing the Euler–Poincaré (EP) equation for the vector space variables. In this case, the map from the canonical variables on the Lie group to the vector space is the standard momentum map defined using the diamond operator. We apply the Clebsch method in examples of the rotating rigid body and the incompressible Euler equations. Along the way, we explain how singular solutions of the EP equation for the diffeomorphism group (EPDiff) arise as momentum maps in the Clebsch approach. In the case of finite-dimensional Lie groups, the Clebsch variational principle is discretized to produce a variational integrator for the dynamical system. We obtain a discrete map from which the variables on the cotangent bundle of a Lie group may be eliminated to produce a discrete EP equation for elements of the vector space. We give an integrator for the rotating rigid body as an example. We also briefly discuss how to discretize infinite-dimensional Clebsch systems, so as to produce conservative numerical methods for fluid dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Austin, P. S. Krishnaprasad, and L.-S. Wang, Almost Poisson integration of rigid body systems, J. Comput. Phys. 107(1) (1993), 105–117.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. M. Bloch, P. E. Crouch, J. E. Marsden, and T. S. Ratiu, Discrete rigid body dynamics and optimal control, in Proceedings of CDC IEEE (1998).

  3. N. Bou-Rabee and J. E. Marsden, Reduced Hamilton–Pontryagin variational integrators (2007, submitted).

  4. T. J. Bridges and S. Reich, Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity, Phys. Lett. A 284 (2001), 184–193.

    Article  MATH  MathSciNet  Google Scholar 

  5. H. Cendra and J. E. Marsden, Lin constraints, Clebsch potentials and variational principles, Physica D 27 (1987), 63–89.

    Article  MATH  MathSciNet  Google Scholar 

  6. C. J. Cotter, D. D. Holm, and P. E. Hydon, Multisymplectic formulation of fluid dynamics using the inverse map, Proc. Roy. Soc. A 463 (2007), 1671–2687; http://arxiv.org/abs/math.DS/0702827.

    MathSciNet  Google Scholar 

  7. D. D. Holm, Euler–Poincaré dynamics of perfect complex fluids, in Mechanics and Dynamics: Volume in Honor of the 60th Birthday of J.E. Marsden, pp. 113–167, Springer, Berlin, 2002.

    Google Scholar 

  8. D. D. Holm and B. A. Kupershmidt, Poisson brackets and Clebsch representations for magnetohydrodynamics, multifluid plasmas and elasticity, Physica D 6(3) (1983), 347–363.

    Article  MathSciNet  Google Scholar 

  9. D. D. Holm and J. E. Marsden, Momentum maps & measure valued solutions of the Euler–Poincaré equations for the diffeomorphism group, Progr. Math. 232 (2004), 203–235; http://arxiv.org/abs/nlin.CD/0312048.

    Article  MathSciNet  Google Scholar 

  10. D. D. Holm, J. E. Marsden, and T. S. Ratiu, The Euler–Poincaré equations and semidirect products with applications to continuum theories, Adv. Math. 137 (1998), 1–81; http://arxiv.org/abs/chao-dyn/9801015.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Iserles, On Cayley-transform methods for the discretization of Lie-group equations, Found. Comput. Math. 1(2) (2001), 129–160.

    Article  MATH  MathSciNet  Google Scholar 

  12. B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics, Cambridge University Press, Cambridge, 2005.

    Google Scholar 

  13. A. Lew, J. E. Marsden, M. Ortiz, and M. West, An overview of variational integrators, in Finite Element Methods: 1970s and Beyond, ed. by L. P. Franca, CIMNE, Barcelona, Spain, 2003, pp. 85–146.

  14. D. Lewis and J. C. Simo, Conserving algorithms for the dynamics of Hamiltonian systems on Lie groups, Nonlinear Sci. 4(1) (1994). 253–299.

    Article  MATH  MathSciNet  Google Scholar 

  15. H. Munthe-Kaas, Runge–Kutta methods on Lie groups, BIT Numer. Math. 38(1) (1998), 92–111.

    Article  MATH  MathSciNet  Google Scholar 

  16. R. L. Seliger and G. B. Whitham, Variational principles in continuum mechanics, Proc. Roy. Soc. A 305 (1968), 1–25.

    Article  MATH  Google Scholar 

  17. J. Serrin, Mathematical principles of classical fluid mechanics, in Handbuch der Physik, pp. 125–263, Springer, Berlin, 1959.

    Google Scholar 

  18. H. Yoshimura and J. E. Marsden, Dirac structures in Lagrangian mechanics, part I: Implicit Lagrangian systems, J. Geom. Phys. 57 (2006), 133–156.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Cotter.

Additional information

Communicated by Arieh Iserles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cotter, C.J., Holm, D.D. Continuous and Discrete Clebsch Variational Principles. Found Comput Math 9, 221–242 (2009). https://doi.org/10.1007/s10208-007-9022-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-007-9022-9

Keywords

Mathematics Subject Classification (2000)

Navigation