Skip to main content
Log in

Useful models for time series of counts or simply wrong ones?

  • Original Paper
  • Published:
AStA Advances in Statistical Analysis Aims and scope Submit manuscript

Abstract

There has been a considerable and growing interest in low integer-valued time series data leading to a diversification of modelling approaches. In addition to static regression models, both observation-driven and parameter-driven models are considered here. We compare and contrast a variety of time series models for counts using two very different data sets as a testbed. A range of diagnostic devices is employed to help inform model adequacy. Special attention is paid to dynamic structure and underlying distributional assumptions including associated dispersion properties. Competing models show attractive features, but overall no one modelling approach is seen to dominate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bollerslev, T.: Generalized autoregressive conditional heteroscedasticity. J. Econom. 31, 307–327 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Brännäs, K.: Estimation and testing in integer-valued AR(1) models. University of Umeå Discussion Paper No. 335 (1994)

  • Brännäs, K., Johansson, P.: Time series count data regression. Commun. Stat., Theory Methods 23, 2907–2925 (1994)

    Article  MATH  Google Scholar 

  • Bu, R., McCabe, B.P.M.: Model selection, estimation and forecasting in INAR(p) models: A likelihood-based Markov chain approach. Int. J. Forecast. 24, 151–162 (2008)

    Article  Google Scholar 

  • Bu, R., McCabe, B.P.M., Hadri, K.: Maximum likelihood estimation of higher-order integer-valued autoregressive processes. J. Time Ser. Anal. 29, 973–994 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Cameron, A.C., Trivedi, P.K.: Regression Analysis of Count Data. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  • Chan, K., Ledolter, J.: Monte Carlo EM estimation for time series models involving counts. J. Am. Stat. Assoc. 90, 242–252 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • Consul, P.C.: Generalized Poisson Distributions: Properties and Applications. Dekker, New York (1989)

    MATH  Google Scholar 

  • Cox, D.R.: Statistical analysis of time series: Some recent developments. Scand. J. Stat. 8, 93–115 (1981)

    MATH  Google Scholar 

  • Czado, C., Gneiting, T., Held, L.: Predictive model assessment for count data. Biometrics 65, 1254–1261 (2009)

    Article  MATH  Google Scholar 

  • Davidson, R., MacKinnon, J.G.: Estimation and Inference in Econometrics. Oxford University Press, New York (1993)

    MATH  Google Scholar 

  • Davis, R.A., Wu, R.: A negative binomial model for time series of counts. Biometrika 96, 735–749 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Davis, R.A., Dunsmuir, W.T.M., Wang, Y.: Modeling time series of count data. In: Ghosh, S. (ed.) Asymptotics, Nonparametrics, and Time Series: A Tribute to Madan Lal Puri, pp. 63–116. Dekker, New York (1999)

    Google Scholar 

  • Davis, R.A., Dunsmuir, W.T.M., Wang, Y.: On autocorrelation in a Poisson regression model. Biometrika 87, 491–505 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Davis, R.A., Dunsmuir, W.T.M., Streett, S.B.: Observation-driven models for Poisson counts. Biometrika 90, 777–790 (2003)

    Article  MathSciNet  Google Scholar 

  • Davis, R.A., Dunsmuir, W.T.M., Streett, S.B.: Maximum likelihood estimation for an observation driven model for Poisson counts. Methodol. Comput. Appl. Probab. 7, 149–159 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Dawid, A.P.: Statistical theory: The prequential approach. J. R. Stat. Soc. Ser. A 147, 278–292 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  • Du, J.G., Li, Y.: The integer-valued autoregressive (INAR (p)) model. J. Time Ser. Anal. 12, 129–142 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  • Durbin, J., Koopman, S.J.: Time series analysis of non-Gaussian observations based on state space models from both classical and Bayesian perspectives. J. R. Stat. Soc. B 62, 3–56 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Efron, B.: Double exponential families and their use in generalized linear regression. J. Am. Stat. Assoc. 81, 709–721 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Engle, R.F., Russell, J.R.: Autoregressive conditional duration: A new model for irregularly spaced transaction data. Econometrica 66, 1127–1162 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Fahrmeir, L., Tutz, G.: Multivariate Statistical Modelling Based on Generalized Linear Models, 2nd edn. Springer, New York (2001)

    MATH  Google Scholar 

  • Farrell, P.J., MacGibbon, B., Tomberlin, T.J.: A hierarchical Bayes approach to estimation and prediction to time series of counts. Braz. J. Probab. Stat. 21, 187–202 (2007)

    MATH  MathSciNet  Google Scholar 

  • Feigin, P.D., Gould, P., Martin, G.M., Snyder, R.D.: Feasible parameter regions for alternative discrete state space models. Stat. Probab. Lett. 78, 2963–2970 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Ferland, R., Latour, A., Oraichi, D.: Integer-valued GARCH process. J. Time Ser. Anal. 27, 923–942 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Fokianos, K.: Truncated Poisson regression for time series of counts. Scand. J. Stat. 28, 645–659 (2001)

    Article  MathSciNet  Google Scholar 

  • Fokianos, K., Rahbek, A., Tjøstheim, D.: Poisson autoregression. J. Am. Stat. Assoc. 104, 1430–1439 (2009)

    Article  MATH  Google Scholar 

  • Freeland, R.K., McCabe, B.P.M.: Analysis of count data by means of the Poisson autoregressive model. J. Time Ser. Anal. 25, 701–722 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Frey, S., Sandås, P.: The impact of iceberg orders in limit order books (2009). http://ssrncom/abstract=1108485

  • Gneiting, T., Raftery, A.E.: Strictly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc. 102, 359–378 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Gneiting, T., Balabdaoui, F., Raftery, A.E.: Probabilistic forecasts, calibration and sharpness. J. R. Stat. Soc. Ser. B 69, 243–268 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Gouriéroux, C., Holly, A., Monfort, A.: Likelihood ratio test, Wald test, and Kuhn–Tucker test in linear models with inequality constraints on the regression parameters. Econometrica 50, 63–80 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  • Grunwald, G.K., Hyndman, R.J., Tedesco, L., Tweedie, R.L.: Non-Gaussian conditional linear AR(1) models. Aust. N. Z. J. Stat. 42, 479–495 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Harvey, A.C.: Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  • Harvey, A.C., Fernandes, C.: Time series models for count or qualitative observations. J. Bus. Econ. Stat. 7, 407–417 (1989)

    Article  Google Scholar 

  • Heinen, A.: Modelling time series count data: The autoregressive conditional Poisson model. CORE Discussion Paper No. 2003-63 (2003)

  • Joe, H.: Time series models with univariate margins in the convolution-closed infinitely divisible class. J. Appl. Probab. 33, 664–677 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Jung, R.C., Liesenfeld, R.: Estimating time series models of count data using efficient importance sampling. Allg. Stat. Arch. 85, 387–407 (2001)

    MATH  MathSciNet  Google Scholar 

  • Jung, R.C., Tremayne, A.R.: Binomial thinning models for integer time series. Stat. Model. 6, 81–96 (2006a)

    Article  MathSciNet  Google Scholar 

  • Jung, R.C., Tremayne, A.R.: Coherent forecasting in integer time series models. Int. J. Forecast. 22, 223–238 (2006b)

    Article  Google Scholar 

  • Jung, R.C., Tremayne, A.R.: Convolution-closed models for count time series with applications. J. Time Ser. Anal. (Forthcoming)

  • Jung, R.C., Ronning, G., Tremayne, A.R.: Estimation in conditional first order autoregression with discrete support. Stat. Pap. 46, 195–224 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Jung, R.C., Kukuk, M., Liesenfeld, R.: Time series of count data: Modeling, estimation and diagnostics. Comput. Stat. Data Anal. 51, 2350–2364 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Jung, R.C., Liesenfeld, R., Richard, J.F.: Dynamic factor models for multivariate count data: An application to stock-market trading activity. J. Bus. Econ. Stat. doi:10.1198/jbes.2009.08212

  • Kedem, B., Fokianos, K.: Regression Models for Time Series Analysis. Wiley, Hoboken (2002)

    Book  MATH  Google Scholar 

  • Kuk, AY, Cheng, Y.W.: The Monte Carlo Newton–Raphson algorithm. J. Stat. Comput. Simul. 59, 233–250 (1997)

    Article  MATH  Google Scholar 

  • MacDonald, I.L., Zucchini, W.: Hidden Markov and Other Models for Discrete-valued Time Series. Chapman and Hall, London (1997)

    MATH  Google Scholar 

  • McCabe, B.P.M., Martin, G.M., Harris, D.: Optimal probabilistic forecasts for counts. Working Paper (2009)

  • McKenzie, E.: Discrete variate time series. In: Shanbhag, D., Rao, C. (eds.) Handbook of Statistics, vol. 21, pp. 573–606. Elsevier Science, Amsterdam (2003)

    Google Scholar 

  • Monteiro, A.A.: Parameter driven multi-state duration models: simulated vs. approximated maximum likelihood estimation. Tinbergen Institute Discussion Paper 2008-021/2 (2008)

  • Oh, M.S., Lim, Y.B.: Bayesian analysis of time series Poisson data. J. Appl. Stat. 28, 259–271 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Rosenblatt, M.: Remarks on a multivariate transformation. Ann. Math. Stat. 23, 470–472 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  • Shephard, N.G.: Generalized linear autoregressions. Working Paper, Nuffield College, Oxford (1995)

  • Weiß, C.H.: Thinning operations for modelling time series of counts—a survey. Adv. Stat. Anal. 92, 319–341 (2008)

    Article  Google Scholar 

  • Weiß, C.H.: Modelling time series of counts with overdispersion. Stat. Methods Appl. 18, 507–519 (2009)

    Article  Google Scholar 

  • Wooldridge, J.M.: Quasi-likelihood methods for count data. In: Pesaran, H., Schmidt, P. (eds.) Handbook of Applied Econometrics, pp. 352–406. Blackwell, Oxford (1999)

    Google Scholar 

  • Zeger, S.L.: A regression model for time series of counts. Biometrika 75, 621–629 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • Zeger, S.L., Qaqish, B.: Markov regression models for time series: A quasi-likelihood approach. Biometrics 44, 1019–1031 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Jung.

Additional information

The original seeds of this paper can be found in an invited lecture given by the first author at the Pfingsttagung of the DStatG in Hamburg 2006. We are grateful to the DFG for financial support under the grant JU 2776/2-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, R.C., Tremayne, A.R. Useful models for time series of counts or simply wrong ones?. AStA Adv Stat Anal 95, 59–91 (2011). https://doi.org/10.1007/s10182-010-0139-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10182-010-0139-9

Keywords

Navigation