Skip to main content

Advertisement

Log in

Use of laser microdissection in the analysis of renal-infiltrating T cells in MRL/lpr mice

  • Original Article
  • Published:
Modern Rheumatology

Abstract

To clarify the role of T cells in the kidneys of MRL/MpJ-lpr (MRL/lpr) mice, cytokine mRNA expression was analyzed, and tissue localization of T cells was examined by immunohistochemistry. Cells infiltrating the glomeruli, glomerular circumference, and perivascular areas in ten female MRL/lpr mice were captured by laser microdissection (LMD). Nested reverse transcription polymerase chain reaction (RT-PCR) of samples was performed with primers specific for β-actin, T-cell receptor β chain (TCR-Cβ), Thy-1, B220, CD4, CD8, interleukin (IL)-2, IL-4, IL-10, IL-13, IL-17, and interferon (IFN)-γ. Frozen sections of lesions were also stained immunohistochemically. B220, MAC-1, Thy-1, CD4, and CD8 staining was observed in glomeruli and perivascular areas, especially in glomerular circumference areas. T cells infiltrating the glomeruli, glomerular circumference areas, and perivascular areas produce INF-γ, IL-13, and IL-17 predominately. IL-10 positivity was identified in 60% of perivascular T cells but not in a substantial number of glomerular or periglomerular T cells. The results of our study suggest that the pathogenesis of renal lesions in MRL/lpr mice is complex and not due simply to the Th1 and Th2 balance. These findings also support the concept of different molecular mechanisms for glomerulonephritis and vasculitis in these mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andrews BS, Eisenberg RA, Theofilopoulos AN, Izui S, Wilson CB, McConahey PJ, et al. Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J Exp Med. 1978;148:1198–215.

    Article  PubMed  CAS  Google Scholar 

  2. Furukawa F, Yoshimasu T. Animal models of spontaneous and drug-induced cutaneous lupus erythematosus. Autoimmun Rev. 2005;4:345–50.

    Article  PubMed  Google Scholar 

  3. Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature. 1992;356:314–7.

    Article  PubMed  CAS  Google Scholar 

  4. Murray L, Martens C. Abnormal T cells from lpr mice down-regulate transcription of interferon-gamma and tumor necrosis factor-alpha in vitro. Cell Immunol. 1990;126:367–76.

    Article  PubMed  CAS  Google Scholar 

  5. Koh DR, Ho A, Rahemtulla A, Fung-Leung WP, Griesser H, Mak TW. Murine lupus in MRL/lpr mice lacking CD4 or CD8 T cells. Eur J Immunol. 1995;25:2558–62.

    Article  PubMed  CAS  Google Scholar 

  6. Peng SL, Madaio MP, Hughes DP, Crispe IN, Owen MJ, Wen L, et al. Murine lupus in the absence of alpha beta T cells. J Immunol. 1996;156:4041–9.

    PubMed  CAS  Google Scholar 

  7. Takahashi S, Fossati L, Iwamoto M, Merino R, Motta R, Kobayakawa T, et al. Imbalance towards Th1 predominance is associated with acceleration of lupus-like autoimmune syndrome in MRL mice. J Clin Invest. 1996;97:1597–604.

    Article  PubMed  CAS  Google Scholar 

  8. Huang FP, Feng GJ, Lindop G, Stott DI, Liew FY. The role of interleukin 12 and nitric oxide in the development of spontaneous autoimmune disease in MRL/MP-lpr/lpr mice. J Exp Med. 1996;183:1447–59.

    Article  PubMed  CAS  Google Scholar 

  9. Schorlemmer HU, Dickneite G, Kanzy EJ, Enssle KH. Modulation of the immunoglobulin dysregulation in GvH- and SLE-like diseases by the murine IL-4 receptor (IL-4-R). Inflamm Res. 1995;44:s194–6.

    Article  PubMed  CAS  Google Scholar 

  10. Peng SL, Moslehi J, Craft J. Roles of interferon-gamma and interleukin-4 in murine lupus. J Clin Invest. 1997;99:1936–46.

    Article  PubMed  CAS  Google Scholar 

  11. Punnonen J, Aversa G, Cocks BG, McKenzie AN, Menon S, Zurawski G, et al. Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc Natl Acad Sci USA. 1993;90:3730–4.

    Article  PubMed  CAS  Google Scholar 

  12. Spadaro A, Rinaldi T, Riccieri V, Taccari E, Valesini G. Interleukin-13 in autoimmune rheumatic diseases: relationship with autoantibody profile. Clin Exp Rheumatol. 2002;20:213–6.

    PubMed  CAS  Google Scholar 

  13. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6:1133–41.

    Article  PubMed  CAS  Google Scholar 

  14. Bi Y, Liu G, Yang R. Th17 cell induction and immune regulatory effects. J Cell Physiol. 2007;211:273–8.

    Article  PubMed  CAS  Google Scholar 

  15. Nose M, Nishimura M, Ito MR, Toh J, Shibata T, Sugisaki T. Arteritis in a novel congenic strain of mice derived from MRL/Lpr lupus mice: genetic dissociation from glomerulonephritis and limited autoantibody production. Am J Pathol. 1996;149:1763–9.

    PubMed  CAS  Google Scholar 

  16. Pinzani P, Orlando C, Pazzagli M. Laser-assisted microdissection for real-time PCR sample preparation. Mol Aspects Med. 2006;27:140–59.

    Article  PubMed  CAS  Google Scholar 

  17. Ladanyi A, Sipos F, Szoke D, Galamb O, Molnar B, Tulassay Z. Laser microdissection in translational and clinical research. Cytometry A. 2006;69:947–60.

    PubMed  Google Scholar 

  18. Schwarting A, Wada T, Kinoshita K, Tesch G, Kelley VR. IFN-gamma receptor signaling is essential for the initiation, acceleration, and destruction of autoimmune kidney disease in MRL-Fas(lpr) mice. J Immunol. 1998;161:494–503.

    PubMed  CAS  Google Scholar 

  19. Haas C, Ryffel B, Le Hir M. IFN-gamma is essential for the development of autoimmune glomerulonephritis in MRL/lpr mice. J Immunol. 1997;158:5484–91.

    PubMed  CAS  Google Scholar 

  20. Balomenos D, Rumold R, Theofilopoulos AN. Interferon-gamma is required for lupus-like disease and lymphoaccumulation in MRL-lpr mice. J Clin Invest. 1998;101:364–71.

    Article  PubMed  CAS  Google Scholar 

  21. Seery JP, Carroll JM, Cattell V, Watt FM. Antinuclear autoantibodies and lupus nephritis in transgenic mice expressing interferon-gamma in the epidermis. J Exp Med. 1997;186:1451–9.

    Article  PubMed  CAS  Google Scholar 

  22. Seery JP. IFN-gamma transgenic mice: clues to the pathogenesis of systemic lupus erythematosus? Arthritis Res. 2000;2:437–40.

    Article  PubMed  CAS  Google Scholar 

  23. Morimoto S, Tokano Y, Kaneko H, Nozawa K, Amano H, Hashimota H. The increased interleukin-13 in patients with systemic lupus erythematosus: relations to other Th1-, Th2-related cytokines and clinical findings. Autoimmunity. 2001;34:19–25.

    Article  PubMed  CAS  Google Scholar 

  24. Shimizu S, Sugiyama N, Masutani K, Sadanaga A, Miyazaki Y, Inoue Y, et al. Membranous glomerulonephritis development with Th2-type immune deviations in MRL/lpr mice deficient for IL-27 receptor (WSX-1). J Immunol. 2005;175:7185–92.

    PubMed  CAS  Google Scholar 

  25. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19:683–765.

    Article  PubMed  CAS  Google Scholar 

  26. Beebe AM, Cua DJ, de Waal Malefyt R. The role of interleukin-10 in autoimmune disease: systemic lupus erythematosus (SLE) and multiple sclerosis (MS). Cytokine Growth Factor Rev. 2002;13:403–12.

    Article  PubMed  CAS  Google Scholar 

  27. Csiszar A, Nagy G, Gergely P, Pozsonyi T, Pocsik E. Increased interferon-gamma (IFN-γ), IL-10 and decreased IL-4 mRNA expression in peripheral blood mononuclear cells (PBMC) from patients with systemic lupus erythematosus (SLE). Clin Exp Immunol. 2000;122:464–70.

    Article  PubMed  CAS  Google Scholar 

  28. Houssiau FA, Lefebvre C, Vanden Berghe M, Lambert M, Devogelaer JP, Renauld JC. Serum interleukin 10 titers in systemic lupus erythematosus reflect disease activity. Lupus. 1995;4:393–5.

    Article  PubMed  CAS  Google Scholar 

  29. Yin Z, Bahtiyar G, Zhang N, Liu L, Zhu P, Robert ME, et al. IL-10 regulates murine lupus. J Immunol. 2002;169:2148–55.

    PubMed  CAS  Google Scholar 

  30. Beissert S, Schwarz A, Schwarz T. Regulatory T cells. J Invest Dermatol. 2006;126:15–24.

    Article  PubMed  CAS  Google Scholar 

  31. van Amelsfort JM, Jacobs KM, Bijlsma JW, Lafeder FP, Taams LS. CD4 + CD25 + regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum. 2004;50:2775–85.

    Article  PubMed  Google Scholar 

  32. Crispin JC, Martı´nez A, Alcocer-Varela J. Quantification of regulatory T cells in patients with systemic lupus erythematosus. J Autoimmun. 2003;21:273–6.

    Article  PubMed  Google Scholar 

  33. Hocke AC, Ermert M, Althoff A, Brell B, N’Guessan PD, Suttorp N, et al. Regulation of interleukin IL-4, IL-13, IL-10, and their downstream components in lipopolysaccharide-exposed rat lungs. Comparison of the constitutive expression between rats and humans. Cytokine. 2006;33:199–211.

    Article  PubMed  CAS  Google Scholar 

  34. Aggarwal S, Gurney AL. IL-17: prototype member of an emerging cytokine family. J Leukoc Biol. 2002;71:1–8.

    PubMed  CAS  Google Scholar 

  35. Moseley TA, Haudenschild DR, Rose L, Reddi AH. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev. 2003;14:155–74.

    Article  PubMed  CAS  Google Scholar 

  36. Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity. 2004;21:467–76.

    Article  PubMed  CAS  Google Scholar 

  37. Wong CK, Ho CY, Li EK, Lam CW. Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus. 2000;9:589–93.

    Article  PubMed  CAS  Google Scholar 

  38. Dong G, Ye R, Shi W, Liu S, Wang T, Yang X, et al. IL-17 induces autoantibody overproduction and peripheral blood mononuclear cell overexpression of IL-6 in lupus nephritis patients. Chin Med J. 2003;116:543–8.

    PubMed  CAS  Google Scholar 

  39. Cai P, König R, Khan MF, Qiu S, Kaphalia BS, Ansari GA. Autoimmune response in MRL+/+ mice following treatment with dichloroacetyl chloride or dichloroacetic anhydride. Toxicol Appl Pharmacol. 2006;216:248–55.

    Article  PubMed  CAS  Google Scholar 

  40. Chen Z, Gu J. Immunoglobulin G expression in carcinomas and cancer cell lines. FASEB J. 2007;21:2931–8.

    Article  PubMed  Google Scholar 

  41. Maeda K, Lee DS, Yanagimoto Ueta Y, Suzuki H. Expression of uterine sensitization-associated gene-1 (USAG-1) in the mouse uterus during the peri-implantation period. J Reprod Dev. 2007;53:931–6.

    Article  PubMed  CAS  Google Scholar 

  42. Khodosevich K, Inta D, Seeburg PH, Monyer H. Gene expression analysis of in vivo fluorescent cells. PLoS ONE. 2007;2:e1151.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Health and Labour Sciences Research Grants for research on Intractable Diseases from the Ministry of Health, Labour and Welfare of Japan. We declare that there is no conflict of interest in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Ito.

About this article

Cite this article

Wang, Y., Ito, S., Chino, Y. et al. Use of laser microdissection in the analysis of renal-infiltrating T cells in MRL/lpr mice. Mod Rheumatol 18, 385–393 (2008). https://doi.org/10.1007/s10165-008-0074-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10165-008-0074-8

Keywords

Navigation