Skip to main content

Advertisement

Log in

Effect of Protective Gas and Pyrolysis Temperature on the Biochar Produced from Three Plants of Gramineae: Physical and Chemical Characterization

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Biochars are carbon-rich products derived from biomass through pyrolysis, and are useful for soil fertility enhancement and carbon sequestration. Most agricultural and forestry residues could be used for biochars production. In this study, biochars were produced from rice straw, bamboo culm, and reed straw under different pyrolysis temperatures. The physiochemical and morphological properties, and PAHs content of biochars were investigated for determining the effect of protective gas and pyrolysis temperatures on biochars under different pyrolysis processes.

Method

Rice straw, bamboo culm (8 years old), and giant reed straw were used in this study. These three organic materials were converted into biochars by slow pyrolysis using a lab-scale fixed bed pyrolysis reactor. Treatment temperatures of slow pyrolysis were 400, 500, 600 and 700 °C with or without the application of high purity nitrogen (>99.999 %) as the protective gas.

Results

We found that the high-temperature pyrolysis produced lower biochar yield (25.84–28.84 %) than the low-temperature pyrolysis (29.44–34.4 %). However, the BET and C content of biochar under the high-temperature pyrolysis process was higher. The low H/C and O/C ratios of the biochars produced at higher temperature pyrolysis, was 0.08–0.10, 0.01–0.22, respectively, which showed that the carbon in these biochars was unsaturated. The PAHs content decreased with increasing pyrolysis temperature. Bamboo culms pyrolysed at 700 °C had the lowest concentration of ∑16PAH (10.06 μg kg−1).

Conclusion

The pyrolysis temperature significantly affected the properties of the resultant biochars (P < 0.05) while the protective gas did not (P > 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cernansky, R.: State-of-the-art soil. Nature 717, 258–260 (2015)

    Article  Google Scholar 

  2. Lehmann, J., Joseph, S.: Biochar for environmental management: an introduction. In: Lehmann, J., Joseph, S. (eds.) Biochar for environmental management-science and technology. Earthshan Publisher, UK and USA (2009)

    Google Scholar 

  3. Huff, M.D., Kumar, S., Lee, J.W.: Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis. J. Environ. Manag. 146, 303–308 (2014)

    Article  Google Scholar 

  4. Yan, Q.G., Toghiani, H., Yu, F., Cai, Z.Y., Zhang, J.L.: Effects of pyrolysis conditions on yield of bio-chars from pine chip. Forest Prod. J. 61, 367–371 (2011)

    Article  Google Scholar 

  5. Lehmann, J.: A handful of carbon. Nature 447, 143–144 (2007)

    Article  Google Scholar 

  6. Mahinpey, N., Murugan, P., Mani, T., Raina, R.: Analysis of bio-oil, biogas, and biochar from pressurized pyrolysis of wheat straw using a tubular reactor. Energy Fuels 23, 2736–2742 (2009)

    Article  Google Scholar 

  7. Mullen, C.A., Boateng, A.A., Hicks, K.B., Goldberg, N.M., Moreau, R.A.: Analysis and comparison of bio-oil produced by fast pyrolysis from three barley biomass/byproduct streams. Energy Fuels 24, 699–706 (2010)

    Article  Google Scholar 

  8. Yuan, J.H., Xu, R.K., Zhang, H.: The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 102, 3488–3497 (2011)

    Article  Google Scholar 

  9. Imam, T., Capareda, S.: Characterization of bio-oil, syn-gas and bio-char from switchgrass pyrolysis at various temperatures. J. Anal. Appl. Pyrolysis 93, 170–177 (2012)

    Article  Google Scholar 

  10. Novak, J.M., Lima, I., Xing, B., Gaskin, J.W., Steiner, C., Das, K.C., Ahmedna, M., Rehrah, D., Watts, D.W., Busscher, W.J., Harry, S.: Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann. Environ. Sci. 3, 195–206 (2009)

    Google Scholar 

  11. Inyang, M., Gao, B., Pullammanappallil, P., Ding, W.C., Zimmerman, A.R.: Biochar from anaerobically digested sugarcane bagasse. Bioresour. Technol. 101, 8868–8872 (2010)

    Article  Google Scholar 

  12. Shen, Y.S., Wang, S.L., Tzou, Y.M., Yan, Y.Y., Kuan, W.H.: Removal of hexavalent Cr by coconut coir and derived chars- the effect of surface functionality. Bioresour. Technol. 104, 165–172 (2012)

    Article  Google Scholar 

  13. Angın, D.: Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour. Technol. 128, 593–597 (2013)

    Article  Google Scholar 

  14. Vaughn, S.F., Kenar, J.A., Eller, F.J., Moser, B.R., Jackson, M.A., Peterson, S.C.: Physical and chemical characterization of biochars produced from coppiced wood of thirteen tree species for use in horticultural substrates. Ind. Crops Prod. 66, 44–51 (2015)

    Article  Google Scholar 

  15. Pituello, C., Francioso, O., Simonetti, G., Pisi, A., Torreggiani, A., Berti, A., Morari, F.: Characterization of chemical-physical, structural and morphological properties of biochars from biowastes produced at different temperatures. J. Soils Sediments 15, 792–804 (2015)

    Article  Google Scholar 

  16. Singh, B., Singh, B.P., Cowie, A.L.: Characterisation and evaluation of biochars for their application as a soil amendment. Aust. J. Soil Res. 48, 516–525 (2010)

    Article  Google Scholar 

  17. Nayan, N.K., Kumar, S., Singh, R.K.: Production of the liquid fuel by thermal pyrolysis of neem seed. Fuel 103, 437–443 (2013)

    Article  Google Scholar 

  18. Suttibak, S.: Characterization of bio-oil produced obtained fast pyrolysis of groundnuts shell. Int. J. Biosci. 3, 82–89 (2013)

    Google Scholar 

  19. Yang, Y., Brammer, J.G., Mahmood, A.S.N., Hornung, A.: Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels. Bioresour. Technol. 169, 794–799 (2014)

    Article  Google Scholar 

  20. Lua, A.C., Yang, T., Guo, J.: Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells. J. Anal. Appl. Pyrolysis 72, 279–287 (2004)

    Article  Google Scholar 

  21. Downie, A., Crosky, A., Munroe, P.: Physical properties of biochar. In: Lehmann, J., Joseph, S. (eds.) Biochar for environmental management, science and technology, pp. 13–32. Earthscan, London (2009)

    Google Scholar 

  22. Marris, E.: Putting the carbon back: black is the new green. Nature 442, 624–626 (2006)

    Article  Google Scholar 

  23. Zheng, H., Wang, Z.Y., Deng, X., Zhao, J., Luo, Y., Novak, J., Herbert, S., Xing, B.S.: Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresour. Technol. 130, 463–471 (2013)

    Article  Google Scholar 

  24. Chen, D.Y., Zhou, J.B., Zhang, Q.S.: Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo. Bioresour. Technol. 169, 313–319 (2014)

    Article  Google Scholar 

  25. Zhang, G.X., Zhang, Q., Sun, K., Liu, X.T., Zheng, W.J., Zhao, Y.: Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures. Environ. Pollut. 159, 2594–2601 (2011)

    Article  Google Scholar 

  26. Mohanty, P., Nanda, S., Pant, K.K., Naik, S., Kozinski, J.A., Dalai, A.K.: Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: effects of heating rate. J. Anal. Appl. Pyrolysis 104, 485–493 (2013)

    Article  Google Scholar 

  27. Amonette, J.E., Joseph, S.: Characteristics of biochar: microchemical properties. In: Lehmann, J., Joseph, S. (eds.) Biochar for environmental management, science and technology, pp. 33–52. Earthscan, London (2009)

    Google Scholar 

  28. Gaudeul, M., Giraud, T., Kiss, L., Shykoff, J.A.: Nuclear and chloroplast microsatellites show multiple introductions in the worldwide invasion history of common ragweed, Ambrosia artemisiifolia. PLoS One 6, 1–15 (2011)

    Article  Google Scholar 

  29. Antal, M.J., Grønli, M.: The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 42, 1619–1640 (2003)

    Article  Google Scholar 

  30. Rutherford, D.W., Wershaw, R.L., Rostad, C.E., Kelly, C.N.: Effect of formation conditions on biochars: compositional and structural properties of cellulose, lignin, and pine biochars. Biomass Bioenergy 46, 693–701 (2012)

    Article  Google Scholar 

  31. Jindo, K., Mizumoto, H., Sawada, Y., Sanchez-Monedero, M.A., Sonoki, T.: Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 11, 6613–6621 (2014)

    Article  Google Scholar 

  32. Chan, K.Y., Xu, Z.: Biochar: nutrient properties and their enhancement. In: Lehmann, J., Joseph, S. (eds.) Biochar for environmental management, science and technology, pp. 67–84. Earthscan, London (2009)

    Google Scholar 

  33. Sanna, A., Li, S.J., Linforth, R., Smart, K.A., Andrésen, J.M.: Bio-oil and bio-char from low temperature pyrolysis of spent grains using activated alumina. Bioresour. Technol. 102, 10695–10703 (2011)

    Article  Google Scholar 

  34. Zielińska, A., Oleszczuka, P., Charmas, B., Skubiszewska-Zięba, J., Pasieczna-Patkowska, S.: Effect of sewage sludge properties on the biochar characteristic. J. Anal. Appl. Pyrolysis 112, 201–213 (2015)

    Article  Google Scholar 

  35. Al-Wabel, M.I., Al-Omran, A., El-Naggar, A.H., Nadeem, M., Usman, A.R.A.: Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol. 131, 374–379 (2013)

    Article  Google Scholar 

  36. Méndez, A., Terradillos, M., Gascó, G.: Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures. J. Anal. Appl. Pyrolysis 102, 124–130 (2013)

    Article  Google Scholar 

  37. Kim, W.K., Shim, T., Kim, Y.S., Hyun, S., Ryu, C., Park, Y.K., Jung, J.: Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures. Bioresour. Technol. 138, 266–270 (2013)

    Article  Google Scholar 

  38. Mašek, O., Brownsort, P., Cross, A., Sohi, S.: Influence of production conditions on the yield and environmental stability of biochar. Fuel 103, 151–155 (2013)

    Article  Google Scholar 

  39. Reeves, J.B.: Mid-infrared spectroscopy of biochars and spectral similarities to coal and kerogens: what Are the implications. Appl. Spectrosc. 66, 689–695 (2012)

    Article  Google Scholar 

  40. Shaaban, A., Se, S.M., Dimin, M.F., Juoi, J.M., Husin, M.H.M., Mitan, N.M.M.: Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis. J. Anal. Appl. Pyrolysis 107, 31–39 (2014)

    Article  Google Scholar 

  41. Hossain, M.K., Strezov, V., Chan, K.Y., Ziolkowski, A., Nelson, P.F.: Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manag. 92, 223–228 (2011)

    Article  Google Scholar 

  42. Schwanninger, M., Rodriguees, J.C., Pereira, H., Hinterstoisser, B.: Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib. Spectrosc. 36, 23–40 (2004)

    Article  Google Scholar 

  43. Ghani, W.A.W.A.K., Mohd, A., Silva, G., Bachmannd, R.T., Taufiq-Yape, Y.H., Rashidf, U., Al-Muhtaseb, A.H.: Biochar production from waste rubber-wood-sawdust and its potential use in C sequestration: chemical and physical characterization. Ind. Crops Prod. 44, 18–24 (2013)

    Article  Google Scholar 

  44. Ai, N.: Experiments Research and mechanism analysis of biomass carbonization by catalytic pvrolvsis. Zhejiang University of Technology, Zhejiang (2013)

    Google Scholar 

  45. Tinwala, F., Mohanty, P., Parmar, S., Patel, A., Pant, K.K.: Intermediate pyrolysis of agro-industrial biomasses in bench scale pyrolyser: product yields and its characterization. Bioresour. Technol. 188, 258–264 (2015)

    Article  Google Scholar 

  46. Freddo, A., Cai, C., Reid, B.J.: Environmental contextualisation of potential toxic elements and polycyclic aromatic hydrocarbons in biochar. Environ. Pollut. 171, 18–24 (2012)

    Article  Google Scholar 

  47. Oleszczuk, P., Jośko, I., Kuśmierz, M.: Biochar properties regarding to contaminants content and ecotoxicological assessment. J. Hazard. Mater. 260, 375–382 (2013)

    Article  Google Scholar 

  48. Cang, L., Zhu, X.D., Wang, Y., Xie, Z.B., Zhou, D.M.: Pollutant contents in biochar and their potential environmental risks for field application. Trans. Chin. Soc. Agric. Eng. 28, 163–167 (2012). (in Chinese with English summary)

    Google Scholar 

  49. Xiao, X., Chen, B.L., Zhu, L.Z.: Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures. Environ. Sci. Technol. 48, 3411–3419 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Project Number: 31400456) and Natural Science Foundation of Jiangsu Province (Project Number: BK20130967), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fusheng Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 291 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Xu, Q., Dong, X. et al. Effect of Protective Gas and Pyrolysis Temperature on the Biochar Produced from Three Plants of Gramineae: Physical and Chemical Characterization. Waste Biomass Valor 7, 1469–1480 (2016). https://doi.org/10.1007/s12649-016-9534-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9534-0

Keywords

Navigation