Skip to main content
Log in

Variations in generation of vegetable, fruit and flower market waste and effects on biogas production, exergy and energy contents

  • REGIONAL CASE STUDY
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

In India, large quantities of centrally generated wastes from vegetable, fruit and flower wholesale markets (VFF) are mostly disposed without treatment at open dumpsites. To implement sustainable waste treatment system including an adapted substrate management for Indian cities, detailed information on temporal mass and compositional fluctuations of VFF are fundamental. This article investigates the sources, extent and influence of fluctuating VFF characteristics, and examines its impact on biogas production and energy potentials. A comprehensive analysis of VFF in the city of Chennai revealed strong fluctuations of individual waste component shares of 34.5–142.9% (vegetables), 40.5–185.9% (fruits) and 33.0–244.9% (flowers) throughout the monitored year. Waste amounts occur independently of fresh vegetable, fruit and flower amounts entering the urban area. Specific biogas yields (SBY) of VFF varied from 403.7 to 570.5 mLN/g oDM during the analysis period of 4 months. A comparative analysis between calculated and measured SBY revealed that measured SBY are on average 9.7–22.4% lower, partly due to unfavourable C/N ratios. Despite fluctuations in VFF composition, monthly variations in theoretically available energy contents are not particularly pronounced if an adapted substrate management is applied for anaerobic treatment of VFF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. UN (2015) World Urbanization Prospects: The 2014 Revision, United Nations (UN), Department of Economic and Social Affairs, Population Division (ST/ESA/SER.A/366)

  2. The World Bank (2016) World Development Indicators. http://databank.worldbank.org/data/ reports.aspx?source = 2&series = SP.URB.TOTL. IN.ZS&country=#. Accessed 22 July 2018

  3. Joseph K, Rajendiran S, Senthilnathan R, Rakesh M (2012) Integrated approach to solid waste management in Chennai: an Indian metro city. J Mater Cycles Waste Manage 14:75–84. https://doi.org/10.1007/s10163-012-0046-0

    Article  Google Scholar 

  4. Annepu R (2012) Sustainable Solid Waste Management in India. Columbia University, Earth Engineering Center. http://www.seas.columbia.edu/earth/wtert/sofos/Sustainable%20Solid%20Waste%20Management%20in%20India_Final.pdf. Accessed 05 January 2018

  5. PIB (2016) ‘Solid waste management rules revised after 16 years; rules now extend to urban and industrial areas’: Javadekar. April 05, 2016. Retrieved from: Press Information Bureau (PIB), Ministry of Environment and Forests, India. http://pib.nic.in/newsite/PrintRelease.aspx?relid=138591. Accessed 06 Jan 2018

  6. Gupta N, Yadav KK, Kumar V (2015) A review on current status of municipal solid waste management in India. J Environ Sci 37:206–217. https://doi.org/10.1016/j.jes.2015.01.034

    Article  Google Scholar 

  7. Speier CJ, Mondal MM, Weichgrebe D (2018) Data reliability of solid waste analysis in Asia’s newly industrialised countries. Int J Environ Waste Manag 22(1/2/3/4):124–146. https://doi.org/10.1504/IJEWM.2018.10014700

    Article  Google Scholar 

  8. Speier CJ, Mondal MM, Weichgrebe D (2018) Evaluation of compositional characteristics of organic waste shares in municipal solid waste in fast-growing metropolitan cities of India. J Mater Cycles Waste Manage 20(4):2150–2162. https://doi.org/10.1007/s10163-018-0757-y

    Article  Google Scholar 

  9. Ghosh A, Debnath B, Ghosh SK, Das B, Sarkar JP (2018) Sustainability analysis of organic fraction of municipal solid waste conversion techniques for efficient resource recovery in India through case studies. J Mater Cycles Waste Manag 20(4):1969–1985. https://doi.org/10.1007/s10163-018-0721-x

    Article  Google Scholar 

  10. Food and Agricultural Organisation (FAO) (2016) Leading producers of fresh vegetables worldwide in 2014 (in million metric tons). http://faostat3.fao.org. Accessed 16 Mar 2017

  11. Sachdeva S, Sachdev T, Sachdeva R (2013) Increasing Fruit and Vegetable Consumption: Challenges and Opportunities. Indian J Community Med 38(4):192–197. https://doi.org/10.4103/0970-0218.120146

    Article  Google Scholar 

  12. Emerson Climate Technologies (2013) The Food Wastage & Cold Storage Infrastructure Relationship In India. http://www2.emerson.com/SiteCollectionImages/ variations/ENIN/News/Report_layout_ReducRe.pdf. Accessed 22 Mar 2018

  13. Narnaware SL, Srivastava NSL, Vahora S (2017) Gasification: an alternative solution for energy recovery and utilization of vegetable market waste. Waste Manag Res 35(3):276–284. https://doi.org/10.1177/0734242X16679257

    Article  Google Scholar 

  14. Jha AK, Sharma C, Singh N, Ramesh R, Purvaja R, Gupta PK (2008) Greenhouse gas emissions from municipal solid waste management in Indian mega-cities: a case study of Chennai landfill sites. Chemosphere 71(4):750–758. https://doi.org/10.1016/j.chemosphere.2007.10.024

    Article  Google Scholar 

  15. Kumar S, Bhattacharyya JK, Chakrabarti AV, Devotta T, Akolkar A (2009) Assessment of the status of municipal solid waste management in metro cities, state capitals, class I cities, and class II towns in India: An insight. Waste Manag 29:883–895. https://doi.org/10.1016/j.wasman.2008.04.011

    Article  Google Scholar 

  16. Patil VS, Deshmukh HV (2015) Anaerobic digestion of vegetable waste for Biogas generation: a review. Int Res J Environ Sci 4(6):80–83

    Google Scholar 

  17. Mohanakrishna G, Goud RK, Mohan SV, Sarma PN (2009) Enhancing biohydrogen production through sewage supplementation of composite vegetable based market waste. Int J Hydrogen Energy 25:533–541. https://doi.org/10.1016/j.ijhydene.2009.11.002

    Article  Google Scholar 

  18. Paraskeva P, Diamadopoulos E (2006) Technologies for olive mill waste water (OMW) treatment: a review. J Chem Technol Biotechnol 81(9):1475–1485. https://doi.org/10.1002/jctb.1553

    Article  Google Scholar 

  19. Alvarez J, Mace S, Llabres P (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Biores Technol 74:3–16. https://doi.org/10.1016/s0960-8524(00)00023-7

    Article  Google Scholar 

  20. Bouallagui H, Touhami Y, Cheikh R, Hamdi M (2005) Bioreactor performance in anaerobic digestion of fruit and vegetable waste. Biochem Process 40(3):989–995. https://doi.org/10.1016/j.procbio.2004.03.007

    Article  Google Scholar 

  21. Saghouri M, Mansoori Y, Rohani A, Khodaparast MHH, Sheikhdavoodi MJ (2018) Modelling and evaluation of anaerobic digestion process of tomato processing wastes for biogas generation. J Mater Cycles Waste Manage 20(1):561–567. https://doi.org/10.1007/s10163-017-0622-4

    Article  Google Scholar 

  22. Alvarez R, Riden G (2008) Semi-continuous co-digestion of solid slaughterhouse waste, manure, and fruit and vegetable waste. Renew Energy 33(4):726–734. https://doi.org/10.1016/j.renene.2007.05.001

    Article  Google Scholar 

  23. Aydn GA, Kocasoy G (2011) Investigation of Appropriate initial composition and aeration method for co-composting of yard waste and market wastes. J Environ Sci Health Part B 38(2):221–231. https://doi.org/10.1081/PFC-120018451

    Article  Google Scholar 

  24. Byer PH, Hoang CP, Nguyen TTT, Chopra S, Maclaren V, Haight M (2006) Household, hotel and market waste audits for composting in Vietnam and Laos. Waste Manag Res 24:465–472. https://doi.org/10.1177/0734242X06068067

    Article  Google Scholar 

  25. Mohan SV, Mohanakrishna G, Goud RK, Sarma PN (2009) Acidogenic fermentation of vegetable based market waste to harness biohydrogen with simultaneous stabilization. Biores Technol 100(12):3061–3068. https://doi.org/10.1016/j.biortech.2008.12.059

    Article  Google Scholar 

  26. Shah Z, Jani YM, Khan F (2014) Evaluation of organic wastes for composting. Commun Soil Sci Plant Anal 45(3):309–320. https://doi.org/10.1080/00103624.2013.861909

    Article  Google Scholar 

  27. Suthar S (2009) Vermicomposting of vegetable-market solid waste using Eisenia fetida: Impact of bulking material on earthworm growth and decomposition rate. Ecol Eng 35:914–920. https://doi.org/10.1016/j.ecoleng.2008.12.019

    Article  MathSciNet  Google Scholar 

  28. Scano EA, Asquer C, Pistis A, Ortu L, Demontis V, Cocco D (2014) Biogas from anaerobic digestion of fruit and vegetable wastes: experimental results on pilot-scale and preliminary performance evaluation of a full-scale power plant. Energy Convers Manag 77:22–30. https://doi.org/10.1016/j.enconman.2013.09.004

    Article  Google Scholar 

  29. Anhuradha S, Vijayagopal V, Radha P, Ramanujam R (2007) Kinetic studies and anaerobic co-digestion of vegetable market waste and sewage sludge. Clean 35(2):197–199. https://doi.org/10.1002/clen.200600014

    Article  Google Scholar 

  30. Voegeli Y, Zurbrügg C (2008) Decentralised anaerobic digestion of kitchen and market waste in developing countries—“state-of-the-art” in south India. In: Proceedings Venice 2008, second international symposium on energy from biomass and waste, 17–20 November 2008, Venice, Italy

  31. Bouallagui H, Lahdheb H, Romdan EB, Rachdi B, Hamdi M (2009) Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. J Environ Manag 90:1844–1849. https://doi.org/10.1016/j.jenvman.2008.12.002

    Article  Google Scholar 

  32. Das A, Mondal C (2013) Studies on the utilization of fruit and vegetable waste for generation of biogas. Int J Eng Sci 3(9):24–32

    Google Scholar 

  33. Marouani L, Bouallagui H, Ben CR, Hamdi M (2002) Biomethanation of green wastes of wholesale market of Tunis. In: Proceedings of international symposium on environmental pollution control and waste management 7–10 January 2002, Tunis (EPCOWM’2002). pp. 318–323

  34. Puyuelo B, Ponsá S, Geat T, Sánchez A (2011) Determining C/N ratios for typical organic wastes using biodegradable fractions. Chemosphere 85(4):653–659. https://doi.org/10.1016/j.chemosphere.2011.07.014

    Article  Google Scholar 

  35. Anjum M, Khalid A, Mahmood T, Arshad M (2012) Anaerobic co-digestion of municipal solid organic waste with melon residues to enhance biodegradability and biogas production. J Mater Cycles Waste Manag 14:388–395. https://doi.org/10.1007/s10163-012-0082-9

    Article  Google Scholar 

  36. Hawkes DL (1980) Factors affecting net energy production from mesophilic anaerobic digestion. In: Stratford DA, Wheatley BI, Hughes DE (eds) Anaerobic Digestion. In: Proceedings of the first international symposium on anaerobic digestion. Applied Science Publishers, London, pp 131–150

  37. Alvarez JA, Otero L, Lema JM (2010) A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes. Biores Technol 101(4):1153–1158. https://doi.org/10.1016/j.biortech.2009.09.061

    Article  Google Scholar 

  38. Samadi MT, Leili M, Alizadeh HHA, Godini K, Ahmadi F (2016) Increasing Methane Production by Anaerobic Co-Digestion of Slaughterhouse with Fruit and Vegetable Wastes. Avicenna J Environ Health Eng 3(2):1–6. https://doi.org/10.5812/ajehe.8541

    Article  Google Scholar 

  39. Yoruklu HC, Korkmaz E, Demir NM, Ozkaya B, Demir A (2017) The impact of pretreatment and inoculum to substrate ratio on methane potential of organic wastes from various origins. J Mater Cycles Waste Manag 20(2):800–809. https://doi.org/10.1007/s10163-017-0641-1

    Article  Google Scholar 

  40. Nayono SE, Gallert C, Winter J (2010) Co-digestion of press water and food waste in a bio-waste digester for improvement of biogas production. Biores Technol 101(18):6998–7004. https://doi.org/10.1016/j.biortech.2010.03.123

    Article  Google Scholar 

  41. Anjum M, Khalid A, Qadeer S, Mianda R (2017) Synergistic effect of co-digestion to enhance anaerobic degradation of catering waste and orange peel for biogas production. Waste Manag Res 35(9):967–977. https://doi.org/10.1177/0734242X17715904

    Article  Google Scholar 

  42. Buendía IM, Fernández FJ, Villasenor J, Rodríguez L (2009) Feasibility of anaerobic co-digestion as a treatment option of meat industry wastes. Biores Technol 100:1903–1909. https://doi.org/10.1016/j.biortech.2008.10.013

    Article  Google Scholar 

  43. World population review (2018) Chennai population 2018. http://worldpopulationreview.com/world-cities/chennai-population/. Accessed 24 July 2018

  44. Greater Chennai Corporation (2018) Solid Waste Management. http://www.chennaicorporation.gov.in/departments/solid-waste-management/index.htm. Accessed 29 July 2018

  45. Murugesan V, Amarnath J (2015) Control of greenhouse gas emissions by energy recovery from the organic fraction of municipal solid waste through Bio Methanation process. Int J Chem Tech Res 8(3):1168–1174

    Google Scholar 

  46. National Horticultural Board (2018) NHB Interactive: Monthwise Annual Price and Arrival report. http://nhb.gov.in/OnlineClient/MonthwiseAnnualPriceandArrivalReport.aspx?enc=3ZOO8K5CzcdC/Yq6HcdIxJ4o5jmAcGG5QGUXX3BlAP4. Accessed 06 June 2018

  47. LAGA (2016) LAGA-Methodensammlung – Abfalluntersuchung. Version 3.0. Stand: 14. Oktober 2016.Bund/Länder-Arbeitsgemeinschaft Abfall

  48. Weichgrebe D, Speier C, Mondal M (2017) Scientific approach for municipal solid waste characterization. In: Goel S (ed) Advances in solid and hazardous waste management, 1st edn. Capital Publishing Company, New Delhi, pp 63–96

    Google Scholar 

  49. APHA (1998) Standard methods for the examination of water & wastewater. American Public Health Association, Washington DC

    Google Scholar 

  50. ASTM (2014) Standard test methods for determination of carbon, hydrogen and nitrogen in analysis samples of coal and carbon in analysis samples of coal and coke. ASTM D5373. ASTM International, West Conshohocken

  51. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  Google Scholar 

  52. Frings CS, Dunn RT (1970) A colorimetric method for determination of total serum lipids based on the sulpho-phospho-vanillin reaction. Amer J Clin Pathol 53(1):89–91

    Article  Google Scholar 

  53. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356. https://doi.org/10.1021/ac60111a017

    Article  Google Scholar 

  54. Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74(10):3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

    Article  Google Scholar 

  55. VDI-Guideline 4630 (2006) Fermentation of organic materials. Characterization of substrate, sampling, collection of material data, fermentation tests. Beuth Verlag GmbH, Berlin

    Google Scholar 

  56. APHA (1992) APHA Method 4500-H: Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington

    Google Scholar 

  57. Ay S (2017) Methodenentwicklung und Bewertung zur Charakterisierung des anaeroben Abbauverhaltens organischer Stoffe. Dissertation. Publications of the Institute of Sanitary Engineering and Waste Management (ISAH), Leibniz University Hannover. Book 157. Hannover, Germany

  58. Keymer U (1999) Beispielhafte Berechnung der theoretischen Gasausbeute in Biogasanlagen. Jahresbericht 1999, Bayrische Landesanstalt für Betriebswirtschaft und Agrarstruktur pp. 22–24

  59. Baserga U (1998) Landwirtschaftliche Co-Vergärungs-Biogasanlagen, Biogas aus organischen Reststoffen und Energiegras. FAT, Nr. 512

  60. Weiland P (2001) Grundlagen der Methangärung – Biologie und Substrate. In: Biogas als regenerative Energie, Stand und Perspektiven, VDI-Bericht 1620. VDI Verlag, Düsseldorf

    Google Scholar 

  61. ATV-DVWK-M363 (2002) Herkunft, Aufbereitung und Verwertung von Biogas. ATV-DVKW, Hennef (ISBN: 3936514119)

    Google Scholar 

  62. DLG (1997) DLG-Futterwerttabellen Wiederkäuer, 7th edn. DLG e.V. DLG-Verlag, Frankfurt

    Google Scholar 

  63. Buswell AM, Müller HF (1952) Mechanism of methane fermentation. J Ind Eng Chem 44(3):550–552. https://doi.org/10.1021/ie50507a033

    Article  Google Scholar 

  64. Boyle WC (1977) Energy recovery from sanitary landfills—a review. In: Microbial energy conversion the proceedings of a seminar sponsored by the UN Institute for Training and Research (UNITAR) and the Ministry for Research and Technology of the Federal Republic of Germany Held in Göttingen, October 1976, pp 119–138. https://doi.org/10.1016/B978-0-08-021791-8.50019-6

  65. Hahne E (2010) Technische Thermodynamik: Einführung und Anwendung. Oldenbourg, Boston (ISBN: 3486592319)

    Book  Google Scholar 

  66. Demirbas A (1997) Calculation of higher heating values of biomass fuels. Fuel 76(5):431–434. https://doi.org/10.1016/S0016-2361(97)85520-2

    Article  Google Scholar 

  67. Demirbas A (2001) Relationships between lignin contents and heating values of biomass. Energy Convers Manag 42(2):183–188. https://doi.org/10.1016/S0196-8904(00)00050-9

    Article  Google Scholar 

  68. Szargut J, Egzergia P (2007) Oradnikobliczania I stosowania, WidawnictwoPolitechnikiShlaskej, Gliwice 2007. Substance. State. Molecular mass. Enthalpy of devaluation. Standard chemical exergy

  69. Eboh FC, Ahlstrom P, Richards T (2016) Estimating the specific chemical exergy of municipal solid waste. Energy Sci Eng 4(3):217–231. https://doi.org/10.1002/ese3.121

    Article  Google Scholar 

  70. Liu G, Zhang R, Mashad HME, Dong R (2009) Effect of feed to inoculum ratios on biogas yields of food and green wastes. Biores Technol 100(21):5103–5108. https://doi.org/10.1016/j.biortech.2009.03.081

    Article  Google Scholar 

  71. Maile I, Muzenda E, Mbohwa C (2016) Biogas production from anaerobic digestion of fruit and vegetable waste from Johannesburg market. In: 7th international conference on biology, environment and chemistry, 98:100–104. https://doi.org/10.7763/IPCBEE.2016.V98.15

  72. Safar KM, Bux MR, Aslam UM, Muhammad BK, Ahmed MS (2018) Analysis of the feasibility of fruit and vegetable wastes for methane yield using different substrate to inoculum ratios at Hyderabad, Sindh, Pakistan. J Mater Cycles Waste Manag 1–10. https://doi.org/10.1007/s10163-018-0799-1

  73. Weichgrebe D (2015) Kompendium Biogas. Habilitation. Publications of the Institute of Sanitary Engineering and Waste Management (ISAH), Leibniz University Hannover. Book 155, Hannover

    Google Scholar 

  74. Yadvika S, Sreekrishnan TR, Kohli S, Rana V (2004) Enhancement of biogas production from solid substrates using different techniques––a review. Biores Technol 95(1):1–10. https://doi.org/10.1016/j.biortech.2004.02.010

    Article  Google Scholar 

  75. Dioha IJ, Ikeme CH, Nafi’u T, Soba NI, Yusuf MBS (2013) Effect of carbon to nitrogen ratio on biogas production. Int Res J Nat Sci 1(3):1–10

    Google Scholar 

  76. Department of Health, United Kingdom (2013) Nutrient analysis of fruit and vegetables—summary report. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/167942/Nutrient_analysis_of_fruit_and_vegetables_-_Summary_Report.pdf. Accessed 24 July 2018

  77. Callaghan FJ, Wase DAJ, Thayanity K, Forster CF (2002) Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass Bioenergy 22(1):71–77. https://doi.org/10.1016/S0961-9534(01)00057-5

    Article  Google Scholar 

  78. Pages-Diaz J, Pereda-Reyes I, Taherzadeh MJ, Sarvari-Horvath I, Lundin M (2014) Anaerobic co-digestion of solid slaughterhouse wastes with agro-residues: synergistic and antagonistic interactions determined in batch digestion assays. Chem Eng J 245:89–98. https://doi.org/10.1016/j.cej.2014.02.008

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Federal Ministry of Education and Research (BMBF) and the Indian Department of Science and Technology (DST) under the Indo-German Science and Technology Centre (IGSTC) (Grant number 01DQ15007A) under the 2 + 2 Project “RESERVES—Resource and energy reliability by co-digestion of veg-market and slaughterhouse waste”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Srinivasan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozhiarasi, V., Speier, C.J., Rose, P.M.B. et al. Variations in generation of vegetable, fruit and flower market waste and effects on biogas production, exergy and energy contents. J Mater Cycles Waste Manag 21, 713–728 (2019). https://doi.org/10.1007/s10163-019-00828-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-019-00828-2

Keywords

Navigation