Skip to main content

Advertisement

Log in

Biogenic amines and the control of neuromuscular signaling in schistosomes

  • Review
  • Published:
Invertebrate Neuroscience

Abstract

Biogenic amines are small cationic monoamines that function broadly as neurotransmitters and/or neuromodulators in every animal phylum. They include such ubiquitous substances as serotonin, dopamine and invertebrate-specific phenolamines (tyramine, octopamine), among others. Biogenic amines are important neuroactive agents in all the flatworms, including blood flukes of the genus Schistosoma, the etiological agents of human schistosomiasis. A large body of evidence spanning nearly five decades identifies biogenic amines as major modulators of neuromuscular function in schistosomes, controlling movement, attachment to the host and other fundamental behaviors. Recent advances in schistosome genomics have made it possible to dissect the molecular mechanisms responsible for these effects and to identify the proteins involved. These efforts have already provided important new information about the mode of action of amine transmitters in the parasite. Moreover, these advances are continuing, as the field moves into a post-genomics era, and new molecular tools for gene and protein analysis are becoming available. Here, we review the current status of this research and discuss future prospects. In particular, we focus our attention on the receptors that mediate biogenic amine activity, their structural characteristics, functional properties and “druggability” potential. One of the themes that will emerge from this discussion is that schistosomes have a rich diversity of aminergic receptors, many of which share little sequence homology with those of the human host, making them ideally suited for selective drug targeting. Strategies for the characterization of these important parasite proteins will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdulla M-H, Ruelas DS, Wolff B, Snedecor J, Lim K-C et al (2009) Drug discovery for schistosomiasis: hit and lead compounds identified in a library of known drugs by medium-throughput phenotypic screening. PLoS Negl Trop Dis 3(7):e478

    Article  PubMed  CAS  Google Scholar 

  • Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217

    Article  PubMed  CAS  Google Scholar 

  • Beckmann S, Buro C, Dissous C, Hirzmann J, Grevelding CG (2010) The Syk Kinase SmTK4 of Schistosoma mansoni Is Involved in the Regulation of Spermatogenesis and Oogenesis. PLoS Pathog 6(2):e1000769

    Article  PubMed  CAS  Google Scholar 

  • Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC et al (2009) The genome of the blood fluke Schistosoma mansoni. Nature (Lond) 460:352–358

    Article  CAS  Google Scholar 

  • Böhme I, Beck-Sickinger AG (2009) Illuminating the life of GPCRs. Cell Comm Signal 7:16

    Article  CAS  Google Scholar 

  • Bond RA, Ijzerman AP (2006) Recent developments in constitutive receptor activity and inverse agonism, and their potential for GPCR drug discovery. Trends Pharmacol Sci 27:92–96

    Article  PubMed  CAS  Google Scholar 

  • Bouvier M (2001) Oligomerization of G-protein-coupled transmitter receptors. Nat Rev Neurosc 2:274–286

    Article  CAS  Google Scholar 

  • Boyle JP, Zaide JV, Yoshino T (2000) Schistosoma mansoni: effects of serotonin and serotonin receptor antagonists on motility and length of primary sporocysts in vitro. Exp Parasitol 94:217–226

    Article  PubMed  CAS  Google Scholar 

  • Boyle JP, Hillyer JF, Yoshino TP (2003) Pharmacological and autoradiographical of serotonin transporter—like activity in sporocysts of the human blood fluke, Schistosoma mansoni. J Comp Physiol A 189:631–641

    Article  CAS  Google Scholar 

  • Camacho M, Agnew A (1995) Schistosoma: rate of glucose transport is altered by acetylcholine interaction with tegumental acetylcholine receptors and acetylcholinesterase. Exp Parasitol 81:584–591

    Article  PubMed  CAS  Google Scholar 

  • Camacho M, Alsford S, Jones A, Agnew A (1995) Nicotinic acetylcholine receptors on the surface of the blood fluke Schistosoma. Mol Biochem Parasitol 71:127–134

    Article  PubMed  CAS  Google Scholar 

  • Catto BA, Ottensen EA (1979) Serotonin uptake in schistosomules of Schistosoma mansoni. Comp Biochem Physiol 63C:235–242

    CAS  Google Scholar 

  • Chase DL, Koelle MR (2007) Biogenic amine neurotransmitters in C. elegans. WormBook, ed. The C. elegans research community, WormBook. doi:10.1895/wormbook.1.132.1

  • Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS et al (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  PubMed  CAS  Google Scholar 

  • Chien EY, Liu W, Zhao Q, Katritch V, Han GW et al (2010) Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330:1091–1095

    Article  PubMed  CAS  Google Scholar 

  • Chitsulo L, Engels D, Montresor A, Savioli L (2000) The global status of schistosomiasis and its control. Acta Trop 77:41–51

    Article  PubMed  CAS  Google Scholar 

  • Correnti JM, Brindley PJ, Pearce EJ (2005) Long-term suppression of cathepsin B levels by RNA interference retards schistosome growth. Mol Biochem Parasitol 143:209–215

    Article  PubMed  CAS  Google Scholar 

  • Costanzi S (2008) On the applicability of GPCR homology models to computer-aided drug discovery: a comparison between in silico and crystal structures of the β2-adrenergic receptor. J Med Chem 51:2907–2914

    Article  PubMed  CAS  Google Scholar 

  • Crouch MF, Osmond RI (2008) New strategies in drug discovery for GPCRs: high throughput detection of cellular ERK phosphorylation. Comb Chem High Throughput Screen 11:344–356

    Article  PubMed  CAS  Google Scholar 

  • Day TA, Bennett JL, Pax RA (1994) Serotonin and its requirement for maintenance of contractility in muscle fibers isolated from Schistosoma mansoni. Parasitol 108:425–432

    Article  CAS  Google Scholar 

  • Dernovici S, Starc T, Dent JA, Ribeiro P (2007) The serotonin receptor SER-1 (5HT2ce) contributes to the regulation of locomotion in Caenorhabditis elegans. Dev Neurobiol 67:189–204

    Article  PubMed  CAS  Google Scholar 

  • Doenhoff MJ, Cioli D, Utzinger J (2008) Praziquantel: mechanisms of action, resistance and new derivatives for schistosomiasis. Curr Opin Infect Dis 21:659–667

    Article  PubMed  CAS  Google Scholar 

  • Dowell SJ, Brown AJ (2009) Yeast assays for G protein-coupled receptors. Methods Mol Biol 552:213–229

    Article  PubMed  CAS  Google Scholar 

  • Durocher Y, Perret S, Thibaudeau E, Gaumond MH, Kamen A, Stocco R, Abramovitz M (2000) A reporter gene assay for high-throughput screening of G-protein-coupled receptors stably or transiently expressed in HEK293 EBNA cells grown in suspension culture. Anal Biochem 284:316–326

    Article  PubMed  CAS  Google Scholar 

  • Eglen RM, Bosse R, Reisine T (2007) Emerging concepts of guanine nucleotide- binding protein—coupled receptor (GPCR) function and implications for high-throughput screening. Assay Drug Dev Technol 5:425–451

    Article  PubMed  CAS  Google Scholar 

  • El-Shehabi F, Ribeiro P (2010) Histamine signaling in Schistosoma mansoni: Immunolocalization and characterization of a new histamine receptor (SmGPR-2). Int J Parasitol 40:1395–1406

    Article  PubMed  CAS  Google Scholar 

  • El-Shehabi F, Vermeire J, Yoshino T, Ribeiro P (2009) Developmental expression analysis and immunolocalization of a biogenic amine receptor in Schistosoma mansoni. Exp Parasitol 122:17–27

    Article  PubMed  CAS  Google Scholar 

  • El-Shehabi F, Taman A, Moali LS, El-Sakkary N, Ribeiro P (2012) A novel G Protein-Coupled receptor of Schistosoma mansoni (SmGPR-3) is activated by dopamine and is widely expressed in the nervous system. PLoS Negl Trop Dis 6(2):e1523

    Article  PubMed  CAS  Google Scholar 

  • Ercoli N, Payarez G, Nunez D (1985) Schistosoma mansoni: Neurotransmitters and the mobility of cercaria and schistosomules. Exp Parasitol 59:204–216

    Article  PubMed  CAS  Google Scholar 

  • Eriksson KS, Johnston RN, Shaw C, Halton DW, Panula PAJ (1996) Widespread distribution of histamine in the nervous system of a trematode flatworm. J Comp Neurol 373:220–227

    Article  PubMed  CAS  Google Scholar 

  • Fairweather I, Maule AG, Mitchell SH, Johnston CF, Halton DW (1987) Immunocytochemical demonstration of 5-hydroxytryptamine (serotonin) in the nervous system of the liver fluke, Fasciola hepatica (Trematoda, Digenea). Parasitol Res 73:255–258

    Article  PubMed  CAS  Google Scholar 

  • Ferrer M, Kolodin GD, Zuck P, Peltier R, Berry K, Mandala SM et al (2003) A fully automated [35S]GTPγS scintillation proximity assay for the high-throughput screening of Gi-linked G protein-coupled receptors. Assay Drug Dev Technol 1:261–273

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein JL, Schleinitz MD, Carabin H, McGarvey ST (2008) Decision-model estimation of the age-specific disability weight for schistosomiasis japonica: a systematic review of the literature. PLoS Negl Trop Dis 2(3):e158

    Article  PubMed  Google Scholar 

  • Fontana AC, Sonders MS, Pereira-Junior OS, Knight M, Javitch JA et al (2009) Two allelic isoforms of the serotonin transporter from Schistosoma mansoni display electrogenic transport and high selectivity for serotonin. Eur J Pharmacol 616:48–57

    Article  PubMed  CAS  Google Scholar 

  • Freitas TC, Jung E, Pearce EJ (2007) TGF-beta signaling controls embryo development in the parasitic flatworm Schistosoma mansoni. PLoS Pathog 3:e52

    Article  PubMed  CAS  Google Scholar 

  • Greenberg RM (2005) Are Ca2+ channels targets of praziquantel action? Int J Pharmacol 35:1–9

    CAS  Google Scholar 

  • Gustafsson MKS (1987) Immunocytochemical demonstration of neuropeptides and serotonin in the nervous system of adult Schistosoma mansoni. Parasitol Res 74:168–174

    Article  PubMed  CAS  Google Scholar 

  • Halton DW (2004) Microscopy and the helminth parasite. Micron 35:361–390

    Article  PubMed  CAS  Google Scholar 

  • Halton DW, Gustafsson MKS (1996) Functional morphology of the platyhelminth nervous system. Parasitol 113:S47–S72

    Article  Google Scholar 

  • Halton DW, Maule AG (2004) Flatworm nerve-muscle: structural and functional analysis. Can J Zool 82:316–333

    Article  Google Scholar 

  • Hamdan F, Ribeiro P (1998) Cloning, functional expression and characterization of a novel form of tyrosine hydroxylase from the human parasite, Schistosoma mansoni. J Neurochem 71:1369–1380

    Article  PubMed  CAS  Google Scholar 

  • Hamdan F, Ribeiro P (1999) Characterization of a stable form of tryptophan hydroxylase from the human parasite, Schistosoma mansoni. J Biol Chem 274:21746–21754

    Article  PubMed  CAS  Google Scholar 

  • Hamdan F, Abramovitz M, Mousa A, Xie J, Durocher Y, Ribeiro P (2002a) A novel Schistosoma mansoni G protein—coupled receptor is responsive to histamine. Mol Biochem Parasitol 119:75–86

    Article  PubMed  CAS  Google Scholar 

  • Hamdan F, Mousa A, Ribeiro P (2002b) Codon—optimization improves heterologous expression of a Schistosoma mansoni cDNA in HEK293 cells. Parasitol Res 88:583–586

    Article  PubMed  Google Scholar 

  • Hannon J, Hoyer D (2008) Molecular biology of 5-HT receptors. Behav Brain Res 195:198–213

    Article  PubMed  CAS  Google Scholar 

  • Harris GP, Hapiak VM, Wragg RT, Miller SB, Hughes LJ, Hobson RJ et al (2009) Three distinct Amine Receptors Operating at Different Levels within the Locomotory Circuit Are Each Essential for the Serotonergic Modulation of Chemosensation in Caenorhabditis elegans. J Neurosci 29:1446–1456

    Article  PubMed  CAS  Google Scholar 

  • Hillman GR, Senft AW (1973) Schistosome motility measurements: response to drugs. J Pharmacol Exp Ther 185:177–184

    PubMed  CAS  Google Scholar 

  • Holden-Dye L, Walker RJ (2007) Anthelmintic drugs. WormBook, ed. The C. elegans Research Community, WormBook. doi:10.1895/wormbook.1.143.1

  • Iovchev M, Boutanaev A, Ivanov I, Wolstenholme A, Nurminsky D, Semenov E (2006) Phylogenetic shadowing of a histamine-gated chloride channel involved in insect vision. Insect Biochem Mol Biol 36:10–17

    Article  PubMed  CAS  Google Scholar 

  • Jeziorski MC, Greenberg RM (2006) Voltage-gated calcium channel subunits from platyhelminths: potential role in praziquantel action. Int J Parasitol 36:625–632

    Article  PubMed  CAS  Google Scholar 

  • Kasinathan RS, Morgan WM, Greenberg RM (2011) Genetic knockdown and pharmacological inhibition of parasite multidrug resistance transporters disrupts egg production in Schistosoma mansoni. PLoS Negl Trop Dis 5(12):e1425

    Article  PubMed  CAS  Google Scholar 

  • Keiser J, Utzinger J (2007) Advances in the discovery and development of trematocidal drugs. Expert Opin Drug Discov 2(Suppl 1):S9–S23

    Article  CAS  Google Scholar 

  • Kimber MJ, Sayegh L, El-Shehabi F, Song C, Zamanian M, Woods DJ et al (2009) Identification of an Ascaris G protein-coupled acetylcholine receptor with atypical muscarinic pharmacology. Int J Parasitol 39:1215–1222

    Article  PubMed  CAS  Google Scholar 

  • Kines KJ, Morales ME, Mann VH, Gobert GN, Brindley PJ (2008) Integration of reporter transgenes into Schistosoma mansoni chromosomes mediated by pseudotyped murine leukemia virus. FASEB J 22:2936–2948

    Article  PubMed  CAS  Google Scholar 

  • Kohn AB, Moroz LL, Lea JM, Greenberg RM (2001) Distribution of nitric oxide synthase immunoreactivity in the nervous system and peripheral tissues of Schistosoma mansoni. Parasitol 122:87–92

    Article  Google Scholar 

  • Komuniecki RW, Hobson RJ, Rex EB, Hapiak VM, Komuniecki PR (2004) Biogenic amine receptors in parasitic nematodes: what can be learned from Caenorhabditis elegans? Mol Biochem Parasitol 137:1–11

    Article  PubMed  CAS  Google Scholar 

  • Kristiansen K (2004) Molecular mechanisms of ligand binding, signaling and regulation within the superfamily of G protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol Ther 103:21–80

    Article  PubMed  CAS  Google Scholar 

  • Larsen MB, Fontana AC, Magalhães LG, Rodrigues V, Mortensen OV (2011) A catecholamine transporter from the human parasite Schistosoma mansoni with low affinity for psychostimulants. Mol Biochem Parasitol 177:35–41

    Article  PubMed  CAS  Google Scholar 

  • Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308:512–517

    Article  PubMed  CAS  Google Scholar 

  • Leurs R, Vischer HF, Wijtmans M, de Esch IJP (2011) En route to new blockbuster anti-histamines: surveying the offspring of the expanding histamine receptor family. Trends Pharmacol Sci 32:250–257

    Article  PubMed  CAS  Google Scholar 

  • Levoye A, Clement N, Tenconi E, Jockers R (2010) Past and future strategies for GPCR deorphanization. In GPCR molecular pharmacology and drug targeting. Wiley, Hoboken, pp 165–190

    Book  Google Scholar 

  • Lin SHS, Civelli O (2004) Orphan G protein-coupled receptors: targets for new therapeutic interventions. Ann Med 36:204–214

    Article  PubMed  CAS  Google Scholar 

  • Manger P, Li J, Christensen BM, Yoshino TP (1996) Biogenic monoamines in the freshwater snail, Biomphalaria glabrata: influence of infection by the human fluke, Schistosoma mansoni. Comp Biochem Physiol A 114:227–234

    Article  CAS  Google Scholar 

  • Mellin TN, Busch RD, Wang CC, Kath G (1983) Neuropharmacology of the parasitic trematode, Schistosoma mansoni. Am J Trop Med Hyg 32:83–93

    PubMed  CAS  Google Scholar 

  • Miao W, Wu L (2010) G-Protein-Coupled receptors as drug targets. In enzyme inhibition in drug discovery and development. Wiley, Hoboken, pp 625–667

    Google Scholar 

  • Morcos PA, Li Y, Jiang S (2008) Vivo-Morpholinos: a non-peptide transporter delivers Morpholinos into a wide array of mouse tissues. Biotechniques 45:613–623

    Article  PubMed  CAS  Google Scholar 

  • Nabhan J, El-Shehabi F, Patocka N, Ribeiro P (2007) The 26S proteasome in Schistosoma mansoni: Bioinformatics analysis, developmental expression and RNA interference (RNAi) studies. Exp Parasitol 117:337–347

    Article  PubMed  CAS  Google Scholar 

  • Ndegwa D, Krautz-Peterson G, Skelly PJ (2007) Protocols for gene silencing in schistosomes. Exp Parasitol 117:284–291

    Article  PubMed  CAS  Google Scholar 

  • Nishimura K, Kitamura Y, Inoue T, Umesono Y, Sano S, Yoshimoto K et al (2007) Reconstruction of dopaminergic neural network and locomotion function in planarian regenerates. Dev Neurobiol 67:1059–1078

    Article  PubMed  CAS  Google Scholar 

  • Nishimura K, Kitamura Y, Inoue T, Umesono Y, Yoshimoto K, Taniguchi T, Agata K (2008) Characterization of tyramine beta-hydroxylase in planarian Dugesia japonica: cloning and expression. Neurochem Int 53:184–192

    Article  PubMed  CAS  Google Scholar 

  • Ogasawara M, Yamauchi K, Satoh Y, Yamaji R, Inui K, Jonker JW et al (2006) Recent advances in molecular pharmacology of the histamine systems: organic cation transporters as a histamine transporter and histamine metabolism. J Pharmacol Sci 101:24–30

    Article  PubMed  CAS  Google Scholar 

  • Omar HH, Humphries JE, Larsen MJ, Kubiak TM, Geary TG, Maule AG et al (2007) Identification of a platyhelminth neuropeptide receptor. Int J Parasitol 37:725–733

    Article  PubMed  CAS  Google Scholar 

  • Orido Y (1989) Histochemical evidence of the catecholamine-associated nervous system in certain schistosome cercaria. Parasitol Res 76:146–149

    Article  PubMed  CAS  Google Scholar 

  • Pani AK, Anctil M (1994) Quantitative survey of biogenic monoamines, their precursors and metabolites in the coelenterate Renilla koellikeri. Biog Amines 10:161–180

    CAS  Google Scholar 

  • Patocka N, Ribeiro P (2007) Characterization of a serotonin transporter in the parasitic flatworm, Schistosoma mansoni: cloning, expression and functional analysis. Mol Biochem Parasitol 154:125–133

    Article  PubMed  CAS  Google Scholar 

  • Pax RA, Siefker C, Bennett JL (1984) Schistosoma mansoni: differences in acetylcholine, dopamine and serotonin control of circular and longitudinal parasite muscles. Exp Parasitol 58:312–324

    Article  Google Scholar 

  • Pearce EJ, MacDonald AS (2002) The immunobiology of schistosomiasis. Nat Rev Immunol 2:499–511

    Article  PubMed  CAS  Google Scholar 

  • Protasio AV, Tsai IJ, Babbage A, Nichol S, Hunt M et al (2012) A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLoS Negl Trop Dis 6(1):e1455

    Article  PubMed  CAS  Google Scholar 

  • Ranganathan R, Cannon SC, Horvitz HR (2000) MOD-1 is a serotonin-gated chloride channel that modulates locomotory behaviour in C. elegans. Nature (Lond) 408:470–475

    Article  CAS  Google Scholar 

  • Ribeiro P, Geary T (2010) Neuronal signaling in schistosomes: current status and prospects for post genomics. Can J Zool 88:1–22

    Article  CAS  Google Scholar 

  • Ribeiro P, El-Shehabi F, Patocka N (2005a) Classical transmitters and their receptors in flatworms. Parasitol 131:S19–S40

    CAS  Google Scholar 

  • Ribeiro P, Mousa A, El-Shehabi F (2005b) Studies of neurotransmitter receptors in Schistosoma mansoni. In: Multidisciplinarity for parasites, vectors and parasitic diseases. Proceedings of the 9th European Multicolloquium of Parasitology, Valencia, Spain. pp 207–212

  • Ringstad N, Abe N, Horvitz HR (2009) Ligand-gated chloride channels are receptors for biogenic amines in C. elegans. Science 325:96–100

    Article  PubMed  CAS  Google Scholar 

  • Robb SMC, Ross E, Alvarado AS (2007) SmedGD: the Schmidtea mediterranea genome database. Nucleic Acids Res 36:D599–D606

    Article  PubMed  CAS  Google Scholar 

  • Rufener L, Keiser J, Kaminsky R, Mäser P, Nilsson D (2010) Phylogenomics of ligand-gated ion channels predicts Monepantel effect. PLoS Pathog 6(9):e1001091

    Article  PubMed  CAS  Google Scholar 

  • Sarramegna V, Talmont F, Demange P, Milon A (2003) Heterologous expression of G-protein-coupled receptors: comparison of expression systems from the standpoint of large-scale production and purification. Cell Mol Life Sci 60:1529–1546

    Article  PubMed  CAS  Google Scholar 

  • Senderowitz H, Marantz Y (2009) G protein-coupled receptors: target-based in silico screening. Curr Pharm Des 15(35):4049–4068

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Javitch JA (2002) The binding site of aminergic G protein-coupled receptors: the transmembrane segments and second extracellular loop. Annu Rev Pharmacol Toxicol 42:437–467

    Article  PubMed  CAS  Google Scholar 

  • Shultz S, Worzella T, Gallagher A, Shieh J, Goueli S, Hsiao K, Vidugiriene J (2008) Miniaturized GPCR signaling studies in 1536-well format. J Biomol Tech 19:267–274

    PubMed  CAS  Google Scholar 

  • Singh R, Pittas M, Heskia I, Xu F, McKerrow JH, Caffrey C (2009) Automated image-based phenotypic screening for high-throughput drug discovery. IEEE Symposium on Computer-Based Medical Systems (CBMS), pp 1–8

  • Smith KA, Komuniecki RW, Ghedin E, Spiro D, Gray J (2007) Genes encoding putative biogenic amine receptors in the parasitic nematode Brugia malayi. Invert Neurosci 7:227–244

    Article  PubMed  CAS  Google Scholar 

  • Štefanić S, Dvořák J, Horn M, Braschi S, Sojka D et al (2010) RNA Interference in Schistosoma mansoni Schistosomula: selectivity, sensitivity and operation for larger-scale screening. PLoS Negl Trop Dis 4(10):e850

    Article  PubMed  CAS  Google Scholar 

  • Taft AS, Norante FA, Yoshino TP (2010) The identification of inhibitors of Schistosoma mansoni miracidial transformation by incorporating a medium-throughput small-molecule screen. Exp Parasitol 125:84–94

    Article  PubMed  CAS  Google Scholar 

  • Taman A, Ribeiro P (2009) Investigation of a dopamine receptor in Schistosoma mansoni: functional studies and immunolocalization. Mol Biochem Parasitol 168:24–33

    Article  PubMed  CAS  Google Scholar 

  • Taman A, Ribeiro P (2011a) Glutamate-mediated signaling in Schistosoma mansoni: a novel glutamate receptor is expressed in neurons and the female reproductive tract. Mol Biochem Parasitol 176:42–50

    Article  PubMed  CAS  Google Scholar 

  • Taman A, Ribeiro P (2011b) Characterization of a truncated metabotropic glutamate receptor in a primitive metazoan, the parasitic flatworm Schistosoma mansoni. PLoS ONE 6(11):e27119

    Article  PubMed  CAS  Google Scholar 

  • Tchoubrieva EB, Ong PC, Pike RN, Brindley PJ, Kalinna BH (2010) Vector-based RNA interference of cathepsin B1 in Schistosoma mansoni. Cell Mol Life Sci 67:3739–3748

    Article  PubMed  CAS  Google Scholar 

  • The Schistosoma Japonicum Genome Sequencing and Functional Analysis Consortium (2009) The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature (Lond) 460:345–351

    Article  CAS  Google Scholar 

  • Tomosky TK, Bennett JL, Bueding E (1974) Tryptaminergic and dopaminergic responses of Schistosoma mansoni. J Pharmacol Exp Ther 190:260–271

    PubMed  CAS  Google Scholar 

  • Verjovski-Almeida S, DeMarco R, Martins EA, Guimaraes PEM, Ojopi EPB, Paquola ACM et al (2003) Transcriptome analysis of the acoelomate human parasite Schistosoma mansoni. Nat Genet 35:148–157

    Article  PubMed  Google Scholar 

  • Verlinden H, Vleugels R, Marchal E, Badisco L, Pfluger HJ, Blenau W, Broeck JV (2010) The role of octopamine in locusts and other arthropods. J Insect Physiol 56(5):854–867

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Broach J, Peiper S (2006) Functional Expression of CXCR4 in Saccharomyces cerevisiae in the Development of Powerful Tools for the Pharmacological Characterization of CXCR4. Meth Mol Biol 332:115–127

    Google Scholar 

  • Wellendorph P, Hansen KB, Balsgaard A, Greenwood JR, Egebjerg J, Bräuner-Osborne H (2005) Deorphanization of GPRC6A: A Promiscuous l-α-Amino Acid Receptor with Preference for Basic Amino Acids. Mol Pharmacol 67:589–597

    Article  PubMed  CAS  Google Scholar 

  • Xie J, Dernovici S, Ribeiro P (2005) Mutagenesis analysis of the serotonin 5-HT2C receptor and a Caenorhabditis elegans 5HT2 homologue: Conserved residues of helix 4 and 7 contribute to agonist-dependent activation of 5HT2 receptors. J Neurochem 92:375–387

    Article  PubMed  CAS  Google Scholar 

  • Xie FY, Woodle MC, Lu PY (2006) Harnessing in vivo siRNA delivery for drug discovery and therapeutic development. Drug Discovery Today 11:67–73

    Article  PubMed  CAS  Google Scholar 

  • Zamanian M, Kimber MJ, McVeigh P, Carlson SA, Maule AG, Day TA (2011) The repertoire of G protein-coupled receptors in the human parasite Schistosoma mansoni and the model organism Schmidtea mediterranea. BMC Genomics 12:596

    Article  PubMed  CAS  Google Scholar 

  • Zheng YC, Hirschberg B, Yuan J, Wang AP, Hunt DC, Ludmerer SW (2002) Identification of two novel Drosophila melanogaster histamine-gated chloride channel subunits expressed in the eye. J Biol Chem 277:2000–2005

    Article  PubMed  CAS  Google Scholar 

  • Zucchi R, Chiellini G, Scanlan TS, Grandy DK (2006) Trace amine-associated receptors and their ligands. Brit J Pharmacol 149:967–978

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank F. El-Shehabi for assistance with the homology modeling of SmGPR-3 and S. Dernovici for his expertise in confocal microscopy. This work was supported by a grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) to P. Ribeiro.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Ribeiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, P., Gupta, V. & El-Sakkary, N. Biogenic amines and the control of neuromuscular signaling in schistosomes. Invert Neurosci 12, 13–28 (2012). https://doi.org/10.1007/s10158-012-0132-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-012-0132-y

Keywords

Navigation