Skip to main content
Log in

Study of epileptiform activity in cerebral ganglion of mud crab Scylla serrata

  • Original Paper
  • Published:
Invertebrate Neuroscience

Abstract

An attempt is made to induce in mud crab (Scylla serrata) epileptiform activities that resemble the generalized epileptic seizures. Cerebral ganglion of crab was exposed in situ, to a convulsant drug pentylenetetrazole (PTZ) 100 mM, for induction of seizures. Also, crabs were pretreated with antiepileptic drug viz sodium valproate (120 μmol/l) to inhibit epileptiform activities. The surface electrical discharges of cerebral ganglion were recorded using Unkelscope (MIT, USA) in control as well as experimental animals. The cerebral ganglion of crab showed a pattern of high cerebral electrical discharges after PTZ treatment compared to control. The sodium valproate promoted sedative action in control and prevented PTZ-mediated epileptiform discharges. Glutamate and GABA contents in cerebral ganglion were assayed. Glutamate level increased (31.45%) during PTZ treatment with concomitant decrease (43.93%) in GABA. Sodium valproate had no effect on glutamate concentration, but it decreased GABA by 24.75%. The present study shows that epileptiform activities can be induced in crabs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allodi S, Florim da Silva S, Taffarel M (1999) Glial cells of the central nervous system in the crab Ucides cordatus. Invertebr Biol 118:175–183

    Article  Google Scholar 

  • Altrup U, Lehmenkuhler A, Speckmann EJ (1991) Effects of the hypnotic drug etomidate in a model nervous system (Buccal ganglia, Helix pomatia). Comparative biochemistry and physiology. C, Comp pharmacol Toxicol 99:579–587

    Article  CAS  Google Scholar 

  • Altrup U, Lehmenkuhler A, Lucke A, Madeja M, Speckmann EJ (1992) Epileptic activity as a tool in neurobiology. Acta Biol Hung 43:79–88

    PubMed  CAS  Google Scholar 

  • Arroyo S (2004) Valproate. In: Shoron SD, Perucca E, Fish D, Dodson E (eds) The treatment of epilepsy. Blackwell Science Ltd, Massachusetts, USA, pp 528–539

    Chapter  Google Scholar 

  • Bhat S, Desai PV (1998) Effect of thermal and salinity stress on Perna viridis heart (L.). Indian J Exp Biol 36:916–919

    CAS  Google Scholar 

  • Bloms P, Musshoff U, Madeja M, Musch-Nittel K, Kuhlmann D, Spener F, Speckmann EJ (1992) Suppression of a ligand operated membrane current by the epileptogenic agent pentylenetetrazol in oocytes of Xenopus laevis after injection of rat brain RNA. Neurosci Lett 147:155–158

    Article  PubMed  CAS  Google Scholar 

  • Bloms-Funke P, Musshoff U, Madeja M, Spener F, Speckmann EJ (1994) Decrease and increase of responses to glutamate- receptor agonists in mRNA—injected Xenopus oocytes by the epileptogenic agent pentylenetetrazol. Dependence of the agonist concentration. Neurosci Lett 181:161–164

    Article  PubMed  CAS  Google Scholar 

  • Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634

    Article  PubMed  CAS  Google Scholar 

  • Cooke I, Graf R, Grau S, Haylett B, Meyers D, Ruben P (1989) Crustacean peptidergic neurons in culture show immediate outgrowth in simple medium. Proc Natl Acad Sci 86:402–406

    Article  PubMed  CAS  Google Scholar 

  • Cooper JR, Bloom FE, Roth RH (1996) Amino acid transmitters. In: Cooper JR, Bloom FE, Roth RH (eds) The biochemical basis of neuropharmacology. New York, Oxford University Press, pp 126–193

  • Freitas RM, Oliveira AA, Sousa FCF, Vasconcelos SMM, Viana GSB, Fonteles MMF (2007) Pathophysiology of status epilepticus induced by pilocarpine. Cent Nerv Sys Agents Medicinal Chem 7:11–15

    Article  CAS  Google Scholar 

  • Goldenshohn ES, Purpura DP (1963) Intracellular potentials of cortical neurons during focal epilpetogenic discharges. Science 139:840–842

    Article  Google Scholar 

  • Hartung K, Hermann A (1987) Differential effects of pentylenetetrazol on ion currents of Aplysia neurons. Brain Res 419:55–64

    Article  PubMed  CAS  Google Scholar 

  • Heinemann U, Hamon B (1986) Calcium and epileptogenesis. Exp Brain Res 65:1–10

    Article  PubMed  CAS  Google Scholar 

  • Janahmadi M, Niazi F, Danyali S, Kamalinejad M (2006) Effects of the fruit essential oil of Cuminum cyminum Linn. (Apiaceae) on pentylenetetrazol-induced epileptiform activity in F1 neurones of Helix aspersa. J Ethnopharmacol 104:278–282

    Article  PubMed  CAS  Google Scholar 

  • Khalilov I, Holmes GL, Ben-Ari Y (2003) In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures. Nat Neurosci 6:1079–1085

    Article  PubMed  CAS  Google Scholar 

  • Lewis DV, Huguenard JR, Anderson WW, Wilson WA (1986) Membrane currents underlying bursting pacemaker activity and spike frequency adaptation in invertebrates. Adv Neurol 44:235–261

    PubMed  CAS  Google Scholar 

  • Liu Yi, Yohrling GJ, Wang Y, Hutchinson TL, Brenneman DE, Flores CM, Zhao B (2009) Carisbamate, a novel neuromodulator, inhibits voltage-gated sodium channels and action potential firing of rat hippocampal neurons. Epilepsy Res 83:62–72

    Article  Google Scholar 

  • Maciejak P, Szyndler J, Turzynska D, Sobolewska A, Taracha E, Skórzewska A, Lehner M, Bidzinski A, Płaznik A (2009) Time course of changes in the concentration of kynurenic acid in the brain of pentylenetetrazol-kindled rats. Brain Res Bull 78:299–305

    Article  PubMed  CAS  Google Scholar 

  • Madeja M, Musshoff U, Kuhlmann D, Speckmann EJ (1991) Membrane currents elicited by the epileptogenic drug pentylenetetrazol in the native oocyte of Xenopus laevis. Brain Res 553:27–32

    Article  PubMed  CAS  Google Scholar 

  • Madeja M, Musshoff U, Lorra C, Pongs O, Speckmann EJ (1996) Mechanism of action of the epileptogenic drug pentylenetetrazol on a cloned neuronal potassium channel. Brain Res 722:59–70

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto H, Ajmone-Marson C (1964) Cortical cellular phenomena in experimental epilepsy: interictal manifestations. Exp Neurol 9:286–304

    Article  PubMed  CAS  Google Scholar 

  • Meldrum B (1991) Excitotoxicity and epileptic brain damage. Epilepsy Res 10:55–61

    Article  PubMed  CAS  Google Scholar 

  • Meldrum BS (1994) The role of glutamate in epilepsy and other CNS disorders. Neurology 44:14–23

    Google Scholar 

  • Nayak P, Chatterjee AK (2001) Effect of aluminium exposure on brain glutamate and GABA systems: an experimental study in rats. Food Chem Toxicol 39:1285–1289

    Article  PubMed  CAS  Google Scholar 

  • Sandeman D, Sandeman R, Derby C, Schmidt M (1992) Morphology of the brain of crayfish, crabs, and spiny lobsters: a common nomenclature for homologous structures. Biol Bull 183:304–326

    Article  Google Scholar 

  • Silver JM, Shin C, McNamara JO (1991) Antiepileptogenic effects of conventional anticonvulsants in the kindling model of epilepsy. Ann Neurol 29:356–363

    Article  PubMed  CAS  Google Scholar 

  • Speckmann EJ, Caspers H (1973) Paroxysmal depolarization and changes in action potentials induced by pentylenetetrazol in isolated neurons of Helix pomatia. Epilepsia 14:397–408

    Article  PubMed  CAS  Google Scholar 

  • Sugaya A, Sugaya E, Tsujitani M (1973) Pentylenetetrazol-induced intracellular potential changes of the neuron of the Japanese land snail Euhadra peliomphala. Jpn J Physiol 23:261–274

    PubMed  CAS  Google Scholar 

  • Tapia R, Medina-Ceja L, Peña F (1999) On the relationship between extracellular glutamate, hyperexcitation and neurodegeneration, in vivo. Neurochem Int 34:23–31

    Article  PubMed  CAS  Google Scholar 

  • Urbanska EM, Czuozwar SJ, Kleinrok Z, Turski WA (1998) Excitatory amino acids in epilepsy. Restorat Neurolog Neurosci 13:25–39

    CAS  Google Scholar 

  • Vreugdenhil M, Wadman WJ (1999) Modulation of sodium currents in rat CA1 neurons by carbamazepine and valproate after kindling epileptogenesis. Epilepsia 40:1512–1522

    Article  PubMed  CAS  Google Scholar 

  • Williams SN, Locke CJ, Braden AL, Caldwell KA, Caldwell GA (2004) Epileptic- like convulsions associated with LIS-1 in the cytoskeletal control of neurotransmitter signaling in Ceanorabditis elegans. Hum Mol Genet 13:2043–2059

    Article  PubMed  CAS  Google Scholar 

  • Wood DE, Gieeson RA, Derby CD (1995) Modulation of behavior by biogenic amines and peptides in the blue crab, Callinectes sapidus. J Comp Physiol A 177:321–333

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to University Grants Commission, India, for providing the funds.

Conflict of interest

None of the authors has any conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Desai.

Additional information

The authors declare that the experiments comply with the current Institutional ethical laws.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Therisa, K.K., Desai, P.V. Study of epileptiform activity in cerebral ganglion of mud crab Scylla serrata . Invert Neurosci 11, 21–27 (2011). https://doi.org/10.1007/s10158-011-0114-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-011-0114-5

Keywords

Navigation