Skip to main content
Log in

Transcripts of the nicotinic acetylcholine receptor subunit gene Pxylα6 with premature stop codons are associated with spinosad resistance in diamondback moth, Plutella xylostella

  • Original Paper
  • Published:
Invertebrate Neuroscience

Abstract

The cDNA sequence of the α6 nicotinic acetylcholine receptor subunit of diamondback moth (Plutella xylostella) was cloned and sequenced. Transcripts were similar between the spinosad-susceptible G88 and Wapio strains. All transcripts from the spinosad-resistant Pearl-Sel strain contained premature stop codons, and most transcripts have not been previously reported. None of these truncated transcripts were seen in the spinosad-susceptible strains. Proteins made from these transcripts would likely have no, or greatly altered, receptor function. An F2 backcross and spinosad bioassay showed that all spinosad bioassay survivors produced truncated α6 transcripts. Thus, it appears that spinosad resistance in diamondback moth is due to a mutation(s) that results in no functional Pxylα6 being produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amiri S, Shimomura M, Vijayan R, Nishiwaki N, Akamatsu M, Matsuda K, Jones AK, Sansom MSP, Sattelle DB (2008) A role for Leu118 of loop E in agonist binding to the α7 nicotinic acetylcholine receptor. Mol Pharmacol 73:1659–1667

    Article  CAS  PubMed  Google Scholar 

  • Baxter SW, Chen M, Dawson A, Zhao J-Z, Vogel H, Shelton AM, Heckel DG, Jiggins CD (2010) Mis-spliced transcripts of nicotinic acetylcholine receptor α6 are associated with field evolved spinosad resistance in Plutella xylostella (L.). PLOS Genet 6:e1000802

  • Bielza P, Quinto V, Fernandez E, Gravalos C, Contreras J (2007) Genetics of spinosad resistance in Frankliniella occidentalis (Thysanoptera: Thripidae). J Econ Entomol 100:916–920

    Article  CAS  PubMed  Google Scholar 

  • Blom NS, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–1362

    Article  CAS  PubMed  Google Scholar 

  • Casida JE, Quistad GB (2004) Why insecticides are more toxic to insects than people: the unique toxicology of insects. J Pestic Sci 29:81–96

    Article  CAS  Google Scholar 

  • Chang YF, Imam JS, Wilkinson MF (2007) The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem 76:51–74

    Article  CAS  PubMed  Google Scholar 

  • Crouse GD, Sparks TC, Schoonover J, Gifford J, Dripps J, Bruce T, Larson LL, Garlich J, Hatton C, Hill RL, Worden TV, Martynow JG (2001) Recent advances in the chemistry of spinosyns. Pest Manag Sci 57:177–185

    Article  CAS  PubMed  Google Scholar 

  • Fayyazuddin A, Zaheer MA, Hiesinger PR, Bellen HJ (2006) The nicotinic acetylcholine receptor Dalpha7 is required for an escape behavior in Drosophila. PLoS Biol 4:e63

    Article  PubMed  Google Scholar 

  • Gao J-R, Deacutis JM, Scott JG (2007a) Characterization of the nicotinic acetylcholine receptor subunits Mdalpha5 and Mdbeta3 on autosome 1 of Musca domestica indicate they are not involved in spinosad resistance. Insect Mol Biol 16:691–701

    Article  CAS  PubMed  Google Scholar 

  • Gao J-R, Deacutis JM, Scott JG (2007b) The nicotinic acetylcholine receptor subunit Mdα6 from Musca domestica is diversified via post transcriptional modification. Insect Mol Biol 16:325–334

    Article  CAS  PubMed  Google Scholar 

  • Grauso M, Reenan RA, Culetto E, Sattelle DB (2002) Novel putative nicotinic acetylcholine receptor subunit genes, Dα5, Dα6 and Dα7, in Drosophila melanogaster identify a new and highly conserved target of adenosine deaminase acting on RNA-mediated A-to-I pre-mRNA editing. Genetics 160:1519–1533

    CAS  PubMed  Google Scholar 

  • Huganir RL, Delcour AH, Greengard P, Hess GP (1986) Phosphorylation of the nicotinic acetylcholine receptor regulates its rate of desensitization. Nature 321:774–776

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Tian N, Cao J, Liang J, Yang Z, Lv J (2007) RNA editing and alternative splicing of the insect nAChR subunit alpha6 transcript: evolutionary conservation, divergence and regulation. BMC Evol Biol 7:98

  • Jones A, Sattelle D (2007) The cys-loop ligand-gated ion channel gene superfamily of the red flour beetle, Tribolium castaneum. BMC Genomics 8:327

    Article  PubMed  Google Scholar 

  • Jones AK, Raymond-Delpech V, Thany SH, Gauthier M, Sattelle DB (2006) The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera. Genome Res 16:1422–1430

    Article  CAS  PubMed  Google Scholar 

  • Kracun S, Harkness PC, Gibb AJ, Millar NS (2008) Influence of the M3–M4 intracellular domain upon nicotinic acetylcholine receptor assembly, targeting and function. Br J Pharmacol 153:1474–1484

    Article  CAS  PubMed  Google Scholar 

  • Kwon DH, Clark JM, Lee SH (2004) Estimation of knockdown resistance in diamondback moth using real-time PASA. Pestic Biochem Physiol 78:39–48

    Article  CAS  Google Scholar 

  • Ninsin KD, Mo J, Miyata T (2000) Decreased susceptibilities of four field populations of the diamondback moth, Plutella xylostella (L.) (Lepidoptera :Yponomeutidae), to acetamiprid. Appl Entomol Zool 35:591–595

    Article  Google Scholar 

  • Orr N, Shaffner AJ, Richey K, Crouse GD (2009) Novel mode of action of spinosad: receptor binding studies demonstrating lack of interaction with known insecticidal target sites. Pestic Biochem Physiol 95:1–5

    Article  CAS  Google Scholar 

  • Perry T, McKenzie JA, Batterham P (2007) A Dalpha6 knockout strain of Drosophila melanogaster confers a high level of resistance to spinosad. Insect Biochem Mol Biol 37:184–188

    Article  CAS  PubMed  Google Scholar 

  • Perry T, Heckel DG, McKenzie JA, Batterham P (2008) Mutations in Da1 or Db2 nicotinic acetylcholine receptor subunits confer resistance to neonicotinoids in Drosophila melanogaster. Insect Biochem Mol Biol 38:520–528

    Article  CAS  PubMed  Google Scholar 

  • Ren X-Q, Chen S-B, Treuil M, Mukherjee J, Rao J, Braunewell KH, Lindstrom JM, Anand R (2005) Structural determinants of a4b2 nicotinic acetylcholine receptor trafficking. J Neurosci 25:6676–6686

    Article  CAS  PubMed  Google Scholar 

  • Rinkevich FD, Scott JG (2009) Transcriptional diversity and allelic variation in nicotinic acetylcholine receptor subunits of the red flour beetle, Tribolium castaneum. Insect Mol Biol 18:233–242

    Article  CAS  PubMed  Google Scholar 

  • Salgado VL (1997) The modes of action of spinosad and other insect control products. Down Earth 52:35–43

    Google Scholar 

  • Salgado VL, Saar R (2004) Desensitizing and non-desensitizing subtypes of alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors in cockroach neurons. J Insect Physiol 50:867–879

    Article  CAS  PubMed  Google Scholar 

  • Salgado VL, Sparks TC (2005) The spinosyns: chemistry, biochemistry, mode of action, and resistance. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive Molecular Insect Science. Elsevier, Boston, pp 137–173

    Chapter  Google Scholar 

  • Sattelle DB, Jones AK, Sattelle BM, Matsuda K, Reenan R, Biggin PC (2005) Edit, cut and paste in the nicotinic acetylcholine receptor gene family of Drosophila melanogaster. BioEssays 27:366–376

    Article  CAS  PubMed  Google Scholar 

  • Sayyed AH, Omar D, Wright DJ (2004) Genetics of spinosad resistance in a multi-resistance field-selected population of Plutella xylostella. Pest Manag Sci 60:827–832

    Article  CAS  PubMed  Google Scholar 

  • Sayyed AH, Attique MNR, Khaliq A (2005) Stability of field-selected resistance to insecticides in Plutella xylostella (Lep., Plutellidae) from Pakistan. J Appl Entomol 129:542–547

    Article  CAS  Google Scholar 

  • Sayyed AH, Saeed S, Noor-Ul-Ane M, Crickmore N (2008) Genetic, biochemical and physiological characterization of spinosad resistance in Plutella xylostella (Lepidoptera: Plutellidae). J Econ Entomol 101:1658–1666

    Article  CAS  PubMed  Google Scholar 

  • Schulz R, Bertrand S, Chamaon K, Smalla K-H, Gundelfinger ED, Bertrand D (2000) Neuronal nicotinic acetylcholine receptors from Drosophila: two different types of a subunits coassemble within the same receptor complex. J Neurochem 74:2537–2546

    Article  CAS  PubMed  Google Scholar 

  • Shao Y-M, Dong K, Zhang C-X (2007) The nicotinic acetylcholine receptor gene family of the silkworm, Bombyx mori. BMC Genomics 8:324–333

    Article  PubMed  Google Scholar 

  • Shelton AM, Cooley RJ, Kroening MK, Wilsey WT, Eigenbrode SD (1991) Comparative analysis of two rearing procedures for diamondback moth. J Entomol Sci 26:17–26

    Google Scholar 

  • Shono T, Scott JG (2003) Spinosad resistance in the house fly, Musca domestica, is due to a recessive factor on autosome 1. Pestic Biochem Physiol 75:1–7

    Article  CAS  Google Scholar 

  • Talekar NS, Shelton AM (1993) Biology, ecology, and management of the diamondback moth. Annu Rev Entomol 38:275–301

    Article  Google Scholar 

  • Thany S, Lanaers G, Raymond-Delpech V, Sattelle D, Lapied B (2006) Exploring the pharmacological properties of insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 28:14–22

    Article  PubMed  Google Scholar 

  • Tian N, Wu X, Zhang Y, Jin Y (2008) A-to-I editing sites are a genomically encoded G: implications for the evolutionary significance and identification of novel editing sites. RNA 14:211–216

    Article  CAS  PubMed  Google Scholar 

  • Watson GB, Chouinard SW, Cook KR, Geng C, Gifford JM, Gustafson GD, Hasler JM, Larrinua IM, Letherer TJ, Mitchell JC, Pak WL, Salgado VL, Sparks TC, Stilwell GE (2010) A spinosyn-sensitive Drosophila melanogaster nicotinic acetylcholine receptor identified through chemically induced target site resistance, resistance gene identification, and heterologous expression. Insect Biochem Mol Biol (in press)

  • Wyss C, Young H, Shukla J, Roe R (2003) Biology and genetics of a laboratory strain of the tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae), highly resistant to spinosad. Crop Prot 22:307–314

    Article  Google Scholar 

  • Zhao JZ, Li YX, Collins HL, Gusukuma-Minuto L, Mau RF, Thompson GD, Shelton AM (2002) Monitoring and characterization of diamondback moth (Lepidoptera: Plutellidae) resistance to spinosad. J Econ Entomol 95:430–436

    Article  CAS  PubMed  Google Scholar 

  • Zhao J-Z, Collins HL, Li Y-X, Mau RFL, Thompson GD, Hertlein M, Andaloro JT, Boykin R, Shelton AM (2006) Monitoring of diamondback moth (Lepidoptera: Plutellidae) resistance to spinosad, indoxacarb, and emamectin benzoate. J Econ Entomol 99:176–181

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank John Diaz for transferring samples between Geneva and Ithaca, and J.-Z. Zhao for his initial work on these resistant strains of diamondback moth. A grant from DowAgrosciences, a Sarkaria Fellowship and the Grace Griswold fund supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey G. Scott.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinkevich, F.D., Chen, M., Shelton, A.M. et al. Transcripts of the nicotinic acetylcholine receptor subunit gene Pxylα6 with premature stop codons are associated with spinosad resistance in diamondback moth, Plutella xylostella . Invert Neurosci 10, 25–33 (2010). https://doi.org/10.1007/s10158-010-0102-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-010-0102-1

Keywords

Navigation