Skip to main content
Log in

Spatiotemporal calcium signaling in a Drosophila melanogaster cell line stably expressing a Drosophila muscarinic acetylcholine receptor

  • Original Articles
  • Published:
Invertebrate Neuroscience

Abstract

A muscarinic acetylcholine receptor (mAChR), DM1, expressed in the nervous system of Drosophila melanogaster, has been stably expressed in a Drosophila S2 cell line (S2-DM1) and used to investigate spatiotemporal calcium changes following agonist activation. Carbamylcholine (CCh) and oxotremorine are potent agonists, whereas application of the vertebrate M1 mAChR agonist, McN-A-343, results in a weak response. Activation of S2-DM1 receptors using CCh resulted in an increase in intracellular calcium ([Ca2+]i) that was biphasic. Two distinct calcium sources were found to contribute to calcium signaling: (1) internal stores that are sensitive to both thapsigargin and 2-aminoethoxydiphenyl borate and (2) capacitative calcium entry. Spatiotemporal imaging of individual S2-DM1 cells showed that the CCh-induced [Ca2+]i transient resulted from a homogeneous calcium increase throughout the cell, indicative of calcium release from internal stores. In contrast, ionomycin induced the formation of a "calcium ring" at the cell periphery, consistent with external calcium influx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–e.
Fig. 2.
Fig. 3a–c.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  • Adams MD, Celniker SE, Holt RA, et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  • Bai D, Sattelle DB (1994) Muscarinic acetylcholine receptors on an identified motor-neuron in the cockroach Periplaneta americana. Neurosci Lett 175:161–165

    CAS  PubMed  Google Scholar 

  • Blake AD, Anthony NM, Chen HH, Harrison JB, Nathanson NM, Sattelle DB (1993) Drosophila nervous system muscarinic acetylcholine receptor: transient functional expression and localization by immunocytochemistry. Mol Pharmacol 44:716–724

    CAS  PubMed  Google Scholar 

  • Breer H, Sattelle DB (1987) Molecular properties and function of insect acetylcholine receptors. J Insect Physiol 33:771–790

    CAS  Google Scholar 

  • Buckingham SD, Matsuda K, Hosie AM, Baylis HA, Squire MD, Lansdell SJ, Millar NS, Sattelle DB (1996) Wild-type and insecticide-resistant homo-oligomeric GABA receptors of Drosophila melanogaster stably expressed in a Drosophila cell line. Neuropharmacology 35:1393–1401

    Article  CAS  PubMed  Google Scholar 

  • Burford NT, Tobin AB, Nahorski SR (1995) Differential coupling of m1, m2 and m3 muscarinic receptor subtypes to inositol 1,4,5-trisphosphate and adenosine 3′,5′-cyclic monophosphate accumulation in Chinese hamster ovary cells. J Pharmacol Exp Ther 274:134–142

    CAS  PubMed  Google Scholar 

  • Caulfield MP (1993) Muscarinic receptors-characterization, coupling and function. Pharmacol Ther 58:319–379

    CAS  PubMed  Google Scholar 

  • Caulfield MP, Birdsall NJ (1998) International Union of Pharmacology XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50:279–290

    CAS  PubMed  Google Scholar 

  • Chen C, Okayama H (1987) High efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7:2745–2752

    CAS  PubMed  Google Scholar 

  • David JA, Pitman RM (1995) Muscarinic agonists modulate calcium-dependent outward currents in an identified insect motoneurone. Brain Res 669:153–156

    Article  CAS  PubMed  Google Scholar 

  • David JA, Pitman RM (1996) Muscarinic receptor activation modulates ligand-gated ion channels in an insect motoneuron via changes in intracellular calcium. Proc R Soc Lond B 263:469–474

    CAS  Google Scholar 

  • Diver JM, Sage SO, Rosado JA (2001) The inositol trisphosphate receptor antagonist 2-aminoethoxydiphenyl borate (2-APB) blocks Ca2+ entry channels in human platelets: cautions for its use in studying Ca2+ influx. Cell Calcium 30:323–329

    Article  CAS  PubMed  Google Scholar 

  • DiVirgilio F, Fasolato C, Steinberg TH (1988) Inhibitors of membrane transport system for organic anions block Fura-2 excretion from PC12 and N2A cells. Biochem J 256:959–963

    CAS  PubMed  Google Scholar 

  • DiVirgilio F, Steinberg TH, Silverstein SC (1990) Inhibition of Fura-2 sequestration and secretion with organic anion transport blockers. Cell Calcium 11:57–62

    PubMed  Google Scholar 

  • Eglen RM, Chopin A, Dillon MP, Hegde S (1999) Muscarinic receptor ligands and their therapeutic potential. Curr Opin Chem Biol 4:426–432

    Article  Google Scholar 

  • Felder CC, Bymaster FP, Ward J, DeLapp N (2000) Therapeutic opportunities for muscarinic receptors in the central nervous system. J Med Chem 43:4333–4353

    Article  CAS  PubMed  Google Scholar 

  • Goodearl ADJ (1999) Nucleic acids encoding muscarinic receptors and uses therefore. United States Patent 5,882,893

  • Gregory RB, Rychkov G, Barritt GJ (2001) Evidence that 2-aminoethyl diphenylborate is a novel inhibitor of store-operated Ca2+ channels in liver cells, and acts through a mechanism which does not involve inositol trisphosphate receptors. Biochem J 354:285–290

    CAS  PubMed  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3448

    PubMed  Google Scholar 

  • Hannan F, Hall LM (1993) Muscarinic acetylcholine receptors in invertebrates: comparisons with homologous receptors of vertebrates. In: Pichon Y (ed) Comparative molecular neurobiology. Birkhauser, Basel, pp 98–145

  • Hardie RC, Reuss H, Lansdell SJ, Millar NS (1997) Functional equivalence of native light-sensitive channels in the Drosophila trp301 mutant and TRPL cation channels expressed in a stably transfected Drosophila cell line. Cell Calcium 21:431–440

    CAS  PubMed  Google Scholar 

  • Hiroaka Y, Sedat JW, Agard DA (1990) Determination of three-dimensional imaging properties of a light microscope system. Biophys J 57:325–333

    PubMed  Google Scholar 

  • Hulme EC, Birdsall NJM, Buckley NJ (1990) Muscarinic receptor subtypes. Annu Rev Pharmacol Toxicol 30:633–673

    CAS  PubMed  Google Scholar 

  • Iwasaki H, Mori Y, Hara Y, Uchida K, Zhou H, Mikoshiba K (2001) 2-Aminoethoxydiphenyl borate (2-APB) inhibits capacitative calcium entry independently of the function of inositol 1,4,5-trisphosphate receptors. Receptors Channels 7:429–439

    CAS  PubMed  Google Scholar 

  • Kukkonen JP, Nasman J, Ojala P, Oker-Blom C, Akerman KE (1996) Functional properties of muscarinic receptor subtypes Hm1, Hm2, Hm3 and Hm5 expressed in Sf9 cells using the baculovirus expression system. J Pharmacol Exp Ther 279:593–601

    CAS  PubMed  Google Scholar 

  • Kukkonen JP, Lund PE, Akerman KEO (2001) 2-Aminoethoxydiphenyl borate reveals heterogeneity in receptor-activated Ca2+ discharge and store-operated Ca2+ influx. Cell Calcium 30:117–129

    Article  CAS  PubMed  Google Scholar 

  • Lansdell SJ, Schmitt B, Betz H, Sattelle DB, Millar NS (1997) Temperature-sensitive expression of Drosophila neuronal nicotinic acetylcholine receptors. J Neurochem 68:1812–1819

    CAS  PubMed  Google Scholar 

  • Ma H-T, Patterson RL, Rossum DB van, Birnbaumer L, Mikoshiba K, Gill DL (2000) Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science 287:1647–1651

    CAS  PubMed  Google Scholar 

  • Masereeuw R, Pelt AP van, Os SHG van, Willems PHGM, Smits P, Russel FGM (2000) Probenecid interferes with renal oxidative metabolism: a potential pitfall in its use as an inhibitor of drug transport. Br J Pharmacol 131:57–62

    CAS  PubMed  Google Scholar 

  • Millar NM, Baylis HA, Reaper CM, Bunting R, Mason WT, Sattelle DB (1995) Functional expression of a cloned Drosophila muscarinic acetylcholine receptor in a stable Drosophila cell line. J Exp Biol 198:1843–1850

    CAS  PubMed  Google Scholar 

  • Onai TO, Fitzgerald MG, Arakawa S, Giocayne JD, Urqhart DA, Hall LM, Fraser CM, McCombie WR, Venter JC (1989) Cloning, sequence analysis and chromosome localization of a Drosophila muscarinic acetylcholine receptor. FEBS Letts 255:218–225

    Google Scholar 

  • Orr GL, Orr N, Hollingsworth RM (1991) Distribution and pharmacological characterization of muscarinic-cholinergic receptors in the cockroach brain. Arch Insect Biochem Phys 16:107–122

    CAS  Google Scholar 

  • Packham MA, Rand ML, Perry DW, Ruben DH, Kinlough-Rathbone RL (1996) Probenecid inhibits platelet responses to aggregating agents in vitro and has a synergistic inhibitory effect with penicillin G. Thromb Haemost 76:239–244

    CAS  PubMed  Google Scholar 

  • Petersen CCH, Berridge MJ, Borgese MF, Bennett DL (1995) Putative capacitative calcium entry channels: expression of Drosophila trp and evidence for the existence of vertebrate homologues. Biochem J 311:41–44

    CAS  PubMed  Google Scholar 

  • Poenie M (1990) Alteration of intracellular Fura-2 fluorescence by viscosity: a simple correction. Cell Calcium 11:85–91

    CAS  PubMed  Google Scholar 

  • Prakriya M, Lewis RS (2001) Potentiation and inhibition of Ca2+ release-activated Ca2+ channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP3 receptors. J Physiol 536:3–19

    CAS  PubMed  Google Scholar 

  • Putney JW Jr (1990) The capacitative calcium entry revisited. Cell Calcium 11:611–624

    CAS  PubMed  Google Scholar 

  • Putney JW Jr, McKay RR (1999) Capacitative calcium entry channels. Bioessays 21:38–46

    PubMed  Google Scholar 

  • Reaper CM, Fanelli F, Buckingham SD, Millar NS, Sattelle DB (1998) Antagonist profile and molecular dynamic simulation of a Drosophila melanogaster muscarinic acetylcholine receptor. Receptors Channels 5:331–345

    CAS  PubMed  Google Scholar 

  • Richards MH (1991) Pharmacology and second messenger interactions of cloned muscarinic receptors. Biochem Pharmacol 42:1645–1653

    Article  CAS  PubMed  Google Scholar 

  • ShaoY, McCarthy KD (1995) Receptor-mediated calcium signals in astroglia: multiple receptors, common stores and all-or-nothing responses. Cell Calcium 17:187–196

    PubMed  Google Scholar 

  • Shapiro RA, Wakimoto BT, Subers EM, Nathanson NM (1989) Characterization and functional expression in mammalian cells of genomic and cDNA clones encoding a Drosophila muscarinic acetylcholine receptor. Proc Natl Acad Sci U S A 86:9039–9043

    CAS  PubMed  Google Scholar 

  • Swatton JE, Morris SA, Wissing F, Taylor CW (2001) Functional properties of Drosophila inositol trisphosphate receptors. Biochem J 359:435–441

    Article  CAS  PubMed  Google Scholar 

  • Towers PR, Sattelle DB (2002) A Drosophila melanogaster cell line (S2) facilitates post-genome functional analysis of receptors and ion channels. Bioessays 24:1066–1073

    Article  CAS  PubMed  Google Scholar 

  • Trimmer BA (1994) Characterization of a muscarinic current that regulates excitability of an identified insect motorneuron. J Neurophys 72:1862–1873

    CAS  Google Scholar 

  • Trimmer BA (1995) Current excitement from insect muscarinic receptors. Trends Neurosci 18:104–111

    Article  CAS  PubMed  Google Scholar 

  • Yagodin S, Hardie RC, Lansdell SJ, Millar NS, Mason WT, Sattelle DB (1997) Receptor- and depletion-mediated activation of a recombinant Drosophila melanogaster TRPL channel expressed in a Drosophila S2 cell line. J Physiol 504:159P–160P

    Google Scholar 

  • Yagodin S, Hardie RC, Lansdell SJ, Millar NS, Mason WT, Sattelle DB (1998) Thapsigargin and receptor-mediated activation of Drosophila TRPL channels stably expressed in a Drosophila S2 cell line. Cell Calcium 23:219–228

    CAS  PubMed  Google Scholar 

  • Yoshihara M, Ensminger AW, Littleton JT (2001) Neurobiology and the Drosophila genome. Funct Integr Genomics 1:235–240

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Jiang M, Peyton M, Boulay G, Hurst R, Stefani E, Birnbaumer L (1996) trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85:661–671

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Medical Research Council of the United Kingdom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Cordova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordova, D., Delpech, V.R., Sattelle, D.B. et al. Spatiotemporal calcium signaling in a Drosophila melanogaster cell line stably expressing a Drosophila muscarinic acetylcholine receptor. Invert Neurosci 5, 19–28 (2003). https://doi.org/10.1007/s10158-003-0024-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-003-0024-2

Keywords

Navigation