Skip to main content

Advertisement

Log in

Long-term improvement of oxidative stress via kidney transplantation ameliorates serum sulfatide levels

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Oxidative stress (OS) is a strong risk factor for cardiovascular disease (CVD). The incidence of CVD is lower among kidney transplantation (KT) recipients than hemodialysis patients, and the reduction in OS may be one reason for this difference. Recently, serum sulfatides were recognized as a candidate inhibitory factor of CVD affected by OS. However, the long-term changes in OS and serum sulfatide levels in KT recipients are unknown.

Methods

We investigated the long-term changes in a serum OS marker, malondialdehyde (MDA), and the serum sulfatide levels in 17 KT recipients. Multiple regression analysis was used to analyze the factors correlated with serum sulfatide levels.

Results

The high serum levels of MDA in the KT recipients decreased dramatically but were still high 1 year after KT surgery. MDA levels decreased further and reached near-normal levels more than 3 years after the surgery. Similarly, over the same 3 years, the low serum sulfatide levels increased to near-normal levels, reaching saturation. Multiple regression analysis showed that the most significant factors influencing serum sulfatide levels were MDA and total cholesterol content.

Conclusions

The current results show that over the long term, the internal improvement brought about by successful KT can normalize OS. Oxidative normalization was significantly correlated with the restoration of serum sulfatide levels, which were also influenced by lipoprotein metabolism. The amelioration of serum sulfatide levels might contribute to the low incidence of CVD in KT recipients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sarnak MJ, Levey AS, Schoolwerth AC, Coresh J, Culleton B, Hamm LL, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation. 2003;108:2154–69.

    Article  PubMed  Google Scholar 

  2. Himmelfarb J, Stenvinkel P, Ikizler TA, Hakim RM. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 2002;62:1524–38.

    Article  CAS  PubMed  Google Scholar 

  3. Ishizuka I. Chemistry and functional distribution of sulfoglycolipids. Prog Lipid Res. 1997;36:245–319.

    Article  CAS  PubMed  Google Scholar 

  4. Hara A, Taketomi T. Occurrence of sulfatide as a major glycosphingolipid in WHHL rabbit serum lipoproteins. J Biochem. 1987;102:83–92.

    CAS  PubMed  Google Scholar 

  5. Zhu XH, Hara A, Taketomi T. The existence of galactosylceramide I3-sulfate in serums of various mammals and its anticoagulant activity. J Biochem. 1991;110:241–5.

    CAS  PubMed  Google Scholar 

  6. Hara A, Uemura K, Taketomi T. Sulfatide prolongs blood-coagulation time and bleeding time by forming a complex with fibrinogen. Glycoconj J. 1996;13:187–94.

    Article  CAS  PubMed  Google Scholar 

  7. Roberts DD, Rao CN, Magnani JL, Spitalnik SL, Liotta LA, Ginsburg V. Laminin binds specifically to sulfated glycolipids. Proc Natl Acad Sci USA. 1985;82:1306–10.

    Article  CAS  PubMed  Google Scholar 

  8. Roberts DD, Haverstick DM, Dixit VM, Frazier WA, Santoro SA, Ginsburg V. The platelet glycoprotein thrombospondin binds specifically to sulfated glycolipids. J Biol Chem. 1985;260:9405–11.

    CAS  PubMed  Google Scholar 

  9. Roberts DD, Williams SB, Gralnick HR, Ginsburg V. Von Willebrand factor binds specifically to sulfated glycolipids. J Biol Chem. 1986;261:3306–9.

    CAS  PubMed  Google Scholar 

  10. Merten M, Thiagarajan P. Role for sulfatides in platelet aggregation. Circulation. 2001;104:2955–60.

    Article  CAS  PubMed  Google Scholar 

  11. Kyogashima M. The role of sulfatide in thrombogenesis and haemostasis. Arch Biochem Biophys. 2004;426:157–62.

    Article  CAS  PubMed  Google Scholar 

  12. Hu R, Li G, Kamijo Y, Aoyama T, Nakajima T, Inoue T, et al. Serum sulfatides as a novel biomarker for cardiovascular disease in patients with end-stage renal failure. Glycoconj J. 2007;24:565–71.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang X, Nakajima T, Kamijo Y, Li G, Hu R, Kannagi R, et al. Acute kidney injury induced by protein-overload nephropathy down-regulates gene expression of hepatic cerebroside sulfotransferase in mice, resulting in reduction of liver and serum sulfatides. Biochem Biophys Res Commun. 2009;390:1382–8.

    Article  CAS  PubMed  Google Scholar 

  14. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92.

    Article  CAS  PubMed  Google Scholar 

  15. Li G, Hu R, Kamijo Y, Nakajima T, Aoyama T, Inoue T, et al. Establishment of a quantitative, qualitative, and high-throughput analysis of sulfatides from small amounts of sera by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Anal Biochem. 2007;362:1–7.

    Article  CAS  PubMed  Google Scholar 

  16. Aoyama T, Peters JM, Iritani N, Nakajima T, Furihata K, Hashimoto T, et al. Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha). J Biol Chem. 1998;273:5678–84.

    Article  CAS  PubMed  Google Scholar 

  17. Aoyama T, Uchida Y, Kelley RI, Marble M, Hofman K, Tonsgard JH, et al. A novel disease with deficiency of mitochondrial very-long-chain acyl-CoA dehydrogenase. Biochem Biophys Res Commun. 1993;191:1369–72.

    Article  CAS  PubMed  Google Scholar 

  18. Aoyama T, Yamano S, Waxman DJ, Lapenson DP, Meyer UA, Fischer V, et al. Cytochrome P-450 hPCN3, a novel cytochrome P-450 IIIA gene product that is differentially expressed in adult human liver. cDNA and deduced amino acid sequence and distinct specificities of cDNA-expressed hPCN1 and hPCN3 for the metabolism of steroid hormones and cyclosporine. J Biol Chem. 1989;264:10388–95.

    CAS  PubMed  Google Scholar 

  19. Tanaka M, Ishii H, Aoyama T, Takahashi H, Toriyama T, Kasuga H, et al. Ankle brachial pressure index but not brachial-ankle pulse wave velocity is a strong predictor of systemic atherosclerotic morbidity and mortality in patients on maintenance hemodialysis. Atherosclerosis. 2011;219:643–7.

    Article  CAS  PubMed  Google Scholar 

  20. Pignoli P, Tremoli E, Poli A, Oreste P, Paoletti R. Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation. 1986;74:1399–406.

    Article  CAS  PubMed  Google Scholar 

  21. de Cal M, Silva S, Cruz D, Basso F, Corradi V, Lentini P, et al. Oxidative stress and “monocyte reprogramming” after kidney transplant: a longitudinal study. Blood Purif. 2008;26:105–10.

    Google Scholar 

  22. Campise M, Bamonti F, Novembrino C, Ippolito S, Tarantino A, Cornelli U, et al. Oxidative stress in kidney transplant patients. Transplantation. 2003;76:1474–8.

    Article  CAS  PubMed  Google Scholar 

  23. Minz M, Heer M, Arora S, Sharma A, Khullar M. Oxidative status in stable renal transplantation. Transplant Proc. 2006;38:2020–1.

    Article  CAS  PubMed  Google Scholar 

  24. Antolini F, Valente F, Ricciardi D, Fagugli RM. Normalization of oxidative stress parameters after kidney transplant is secondary to full recovery of renal function. Clin Nephrol. 2004;62:131–7.

    CAS  PubMed  Google Scholar 

  25. Simmons EM, Langone A, Sezer MT, Vella JP, Recupero P, Morrow JD, et al. Effect of renal transplantation on biomarkers of inflammation and oxidative stress in end-stage renal disease patients. Transplantation. 2005;79:914–9.

    Article  CAS  PubMed  Google Scholar 

  26. van den Dorpel MA, Ghanem H, Rischen-Vos J, Man in’t Veld AJ, Jansen H, Weimar W. Conversion from cyclosporine A to azathioprine treatment improves LDL oxidation in kidney transplant recipients. Kidney Int. 1997;51:1608–12.

    Article  PubMed  Google Scholar 

  27. Apanay DC, Neylan JF, Ragab MS, Sgoutas DS. Cyclosporine increases the oxidizability of low-density lipoproteins in renal transplant recipients. Transplantation. 1994;58:663–9.

    CAS  PubMed  Google Scholar 

  28. Perrea DN, Moulakakis KG, Poulakou MV, Vlachos IS, Papachristodoulou A, Kostakis AI. Correlation between oxidative stress and immunosuppressive therapy in renal transplant recipients with an uneventful postoperative course and stable renal function. Int Urol Nephrol. 2006;38:343–8.

    Article  CAS  PubMed  Google Scholar 

  29. Wanner C, Quaschning T, Weingärnter K. Impact of dyslipidemia in renal transplant recipients. Curr Opin Urol. 2000;10:77–80.

    Article  CAS  PubMed  Google Scholar 

  30. Osorio A, Ortega E, de Haro T, Torres JM, Sánchez P, Ruiz-Requena E. Lipid profiles and oxidative stress parameters in male and female hemodialysis patients. Mol Cell Biochem. 2011;353:59–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by GL Sciences (Tokyo, Japan) and the Shinshu Public Utility Foundation (Matsumoto, Japan).

Conflict of interest

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Kamijo.

Additional information

Y. Kamijo and L. Wang contributed equally to this work.

About this article

Cite this article

Kamijo, Y., Wang, L., Matsumoto, A. et al. Long-term improvement of oxidative stress via kidney transplantation ameliorates serum sulfatide levels. Clin Exp Nephrol 16, 959–967 (2012). https://doi.org/10.1007/s10157-012-0634-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-012-0634-2

Keywords

Navigation