Skip to main content

Advertisement

Log in

Serum LOX-1 is a novel prognostic biomarker of colorectal cancer

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Colorectal cancer is the third most common cancer worldwide. If biomarkers can be identified in liquid biopsy, diagnosis and treatment can be optimized even when cancerous tissues are not available. The purpose of this study was to identify proteins from liquid biopsy that would be useful as markers of poor prognosis.

Methods

First, we comprehensively analyzed serum proteins to identify potential biomarkers and focused on serum lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). The relationship between LOX-1 and the prognosis of patients with colorectal cancer has not been reported. Next, we validated this marker using serum samples from 238 patients with colorectal cancer by ELISA and 100 tissue samples by immunohistochemical staining.

Results

The optimal cut-off value of serum LOX-1 was 538.7 pg/mL according to time-dependent receiver operating characteristics curve analysis. The overall survival of patients with high levels of serum LOX-1 was significantly poorer than that of individuals with low levels of LOX-1 in the training and test datasets. In multivariate analysis for overall survival, serum LOX-1 was an independent prognostic factor identified in liquid biopsy (hazard ratio = 1.729, p = 0.027). The prognosis of patients with high LOX-1 expression in tumor tissues was significantly poorer than that of individuals with low expression (p =0.047 ). Additionally, inflammatory factors such as white blood cell count, C-reactive protein level, neutrophil/lymphocyte ratio, and monocyte/lymphocyte ratio were significantly higher in the group with high serum LOX-1 levels.

Conclusions

Serum LOX-1 might be a useful biomarker of poor prognosis in colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Marin JJ, Sanchez de Medina F, Castano B et al (2012) Chemoprevention, chemotherapy, and chemoresistance in colorectal cancer. Drug Metab Rev 44(2):148–172. https://doi.org/10.3109/03602532.2011.638303

    Article  CAS  PubMed  Google Scholar 

  2. Tournigand C, Andre T, Achille E et al (2004) FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol 22(2):229–237. https://doi.org/10.1200/jco.2004.05.113

    Article  CAS  PubMed  Google Scholar 

  3. Cassidy J, Clarke S, Diaz-Rubio E et al (2008) Randomized phase III study of capecitabine plus oxaliplatin compared with fluorouracil/folinic acid plus oxaliplatin as first-line therapy for metastatic colorectal cancer. J Clin Oncol 26(12):2006–2012. https://doi.org/10.1200/jco.2007.14.9898

    Article  CAS  PubMed  Google Scholar 

  4. Saltz LB, Clarke S, Diaz-Rubio E et al (2008) Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol 26(12):2013–2019. https://doi.org/10.1200/jco.2007.14.9930

    Article  CAS  PubMed  Google Scholar 

  5. Van Cutsem E, Kohne CH, Hitre E et al (2009) Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 360(14):1408–1417. https://doi.org/10.1056/NEJMoa0805019

    Article  PubMed  Google Scholar 

  6. Suzuki N, Hazama S, Nagasaka T et al (2019) Multicenter phase II study of biweekly CAPIRI plus bevacizumab as second-line therapy in patients with metastatic colorectal cancer (JSWOG-C3 study). Int J Clin Oncol 24(10):1223–1230. https://doi.org/10.1007/s10147-019-01473-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dienstmann R, Salazar R, Tabernero J (2015) Personalizing colon cancer adjuvant therapy: selecting optimal treatments for individual patients. J Clin Oncol 33(16):1787–1796. https://doi.org/10.1200/jco.2014.60.0213

    Article  CAS  PubMed  Google Scholar 

  8. Kitahara M, Hazama S, Tsunedomi R et al (2016) Prediction of the efficacy of immunotherapy by measuring the integrity of cell-free DNA in plasma in colorectal cancer. Cancer Sci 107(12):1825–1829. https://doi.org/10.1111/cas.13085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kijima T, Hazama S, Tsunedomi R et al (2017) MicroRNA-6826 and -6875 in plasma are valuable noninvasive biomarkers that predict the efficacy of vaccine treatment against metastatic colorectal cancer. Oncol Rep 37(1):23–30. https://doi.org/10.3892/or.2016.5267

    Article  PubMed  Google Scholar 

  10. Hazama S, Tamada K, Yamaguchi Y et al (2018) Current status of immunotherapy against gastrointestinal cancers and its biomarkers: perspective for precision immunotherapy. Ann Gastroenterol Surg 2(4):289–303. https://doi.org/10.1002/ags3.12180

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kono K (2018) Advances in cancer immunotherapy for gastroenterological malignancy. Ann Gastroenterol Surg 2(4):244–245. https://doi.org/10.1002/ags3.12184

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sawamura T, Kume N, Aoyama T et al (1997) An endothelial receptor for oxidized low-density lipoprotein. Nature 386(6620):73–77. https://doi.org/10.1038/386073a0

    Article  CAS  PubMed  Google Scholar 

  13. Crucet M, Wust SJ, Spielmann P et al (2013) Hypoxia enhances lipid uptake in macrophages: role of the scavenger receptors Lox1, SRA, and CD36. Atherosclerosis 229(1):110–117. https://doi.org/10.1016/j.atherosclerosis.2013.04.034

    Article  CAS  PubMed  Google Scholar 

  14. Draude G, Hrboticky N, Lorenz RL (1999) The expression of the lectin-like oxidized low-density lipoprotein receptor (LOX-1) on human vascular smooth muscle cells and monocytes and its down-regulation by lovastatin. Biochem Pharmacol 57(4):383–386

    Article  CAS  Google Scholar 

  15. Ohki I, Ishigaki T, Oyama T et al (2005) Crystal structure of human lectin-like, oxidized low-density lipoprotein receptor 1 ligand binding domain and its ligand recognition mode to OxLDL. Structure 13(6):905–917. https://doi.org/10.1016/j.str.2005.03.016

    Article  CAS  PubMed  Google Scholar 

  16. Lee WJ, Ou HC, Hsu WC et al (2010) Ellagic acid inhibits oxidized LDL-mediated LOX-1 expression, ROS generation, and inflammation in human endothelial cells. J Vasc Surg 52(5):1290–1300. https://doi.org/10.1016/j.jvs.2010.04.085

    Article  PubMed  Google Scholar 

  17. Otamiri T, Sjodahl R (1989) Increased lipid peroxidation in malignant tissues of patients with colorectal cancer. Cancer 64(2):422–425

    Article  CAS  Google Scholar 

  18. Keshavarzian A, Zapeda D, List T et al (1992) High levels of reactive oxygen metabolites in colon cancer tissue: analysis by chemiluminescence probe. Nutr Cancer 17(3):243–249. https://doi.org/10.1080/01635589209514193

    Article  CAS  PubMed  Google Scholar 

  19. Suzuki K, Ito Y, Wakai K et al (2004) Serum oxidized low-density lipoprotein levels and risk of colorectal cancer: a case-control study nested in the Japan Collaborative Cohort Study. Cancer Epidemiol Biomark Prev 13(11 Pt 1):1781–1787

    CAS  Google Scholar 

  20. Li C, Zhang J, Wu H et al (2017) Lectin-like oxidized low-density lipoprotein receptor-1 facilitates metastasis of gastric cancer through driving epithelial-mesenchymal transition and PI3K/Akt/GSK3beta activation. Sci Rep 7:45275. https://doi.org/10.1038/srep45275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang J, Zhang L, Li C et al (2018) LOX-1 is a poor prognostic indicator and induces epithelial-mesenchymal transition and metastasis in pancreatic cancer patients. Cell Oncol 41(1):73–84. https://doi.org/10.1007/s13402-017-0360-6

    Article  CAS  Google Scholar 

  22. Murdocca M, Mango R, Pucci S et al (2016) The lectin-like oxidized LDL receptor-1: a new potential molecular target in colorectal cancer. Oncotarget 7(12):14765–14780. https://doi.org/10.18632/oncotarget.7430

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sulowicz W (1983) Phagocytosis and peroxidase activity in neutrophils from peripheral blood of patients with malignant tumours of lung, stomach and large intestine. Folia Haematol 110(1):48–54

    CAS  Google Scholar 

  24. Mariani F, Roncucci L (2017) Role of the vanins-myeloperoxidase axis in colorectal carcinogenesis. Int J Mol Sci. https://doi.org/10.3390/ijms18050918

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kao RC, Wehner NG, Skubitz KM et al (1988) Proteinase 3. A distinct human polymorphonuclear leukocyte proteinase that produces emphysema in hamsters. J Clin Investig 82(6):1963–1973. https://doi.org/10.1172/jci113816

    Article  CAS  PubMed  Google Scholar 

  26. Scheibenbogen C, Letsch A, Thiel E et al (2002) CD8 T-cell responses to Wilms tumor gene product WT1 and proteinase 3 in patients with acute myeloid leukemia. Blood 100(6):2132–2137. https://doi.org/10.1182/blood-2002-01-0163

    Article  CAS  PubMed  Google Scholar 

  27. Wang L, Yin J, Wang X et al (2016) C-type lectin-like receptor 2 suppresses AKT signaling and invasive activities of gastric cancer cells by blocking expression of phosphoinositide 3-kinase subunits. Gastroenterology 150(5):1183–1195.e1116. https://doi.org/10.1053/j.gastro.2016.01.034

    Article  CAS  PubMed  Google Scholar 

  28. Condamine T, Dominguez GA, Youn JI et al (2016) Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci Immunol. https://doi.org/10.1126/sciimmunol.aaf8943

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jiang WG, Watkins G, Douglas-Jones A et al (2006) Reduction of isoforms of 15-lipoxygenase (15-LOX)-1 and 15-LOX-2 in human breast cancer. Prostaglandins Leukot Essent Fatty Acids 74(4):235–245. https://doi.org/10.1016/j.plefa.2006.01.009

    Article  CAS  PubMed  Google Scholar 

  30. Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87(2):159–170

    Article  CAS  Google Scholar 

  31. Fyrnys B, Claus R, Wolf G et al (1997) Oxidized low density lipoprotein stimulates protein kinase C (PKC) activity and expression of PKC-isotypes via prostaglandin-H-synthase in P388D1 cells. Adv Exp Med Biol 407:93–98

    Article  CAS  Google Scholar 

  32. Higuma T, Abe N, Tateyama S et al (2015) Plasma soluble lectin-like oxidized low-density lipoprotein receptor-1 as a novel prognostic biomarker in patients with ST-segment elevation acute myocardial infarction. Circ J 79(3):641–648. https://doi.org/10.1253/circj.CJ-14-0904

    Article  CAS  PubMed  Google Scholar 

  33. Balzan S, Lubrano V (2018) LOX-1 receptor: a potential link in atherosclerosis and cancer. Life Sci 198:79–86. https://doi.org/10.1016/j.lfs.2018.02.024

    Article  CAS  PubMed  Google Scholar 

  34. Yu C, Liu Y, Tan H et al (2014) Metadherin regulates metastasis of squamous cell carcinoma of the head and neck via AKT signalling pathway-mediated epithelial-mesenchymal transition. Cancer Lett 343(2):258–267. https://doi.org/10.1016/j.canlet.2013.09.033

    Article  CAS  PubMed  Google Scholar 

  35. Qiao M, Sheng S, Pardee AB (2008) Metastasis and AKT activation. Cell Cycle 7(19):2991–2996. https://doi.org/10.4161/cc.7.19.6784

    Article  CAS  PubMed  Google Scholar 

  36. Murdocca M, Capuano R, Pucci S et al (2019) Targeting LOX-1 inhibits colorectal cancer metastasis in an animal model. Front Oncol 9:927. https://doi.org/10.3389/fonc.2019.00927

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Hiroko Takenouchi and Mr. Toshihiko Kobayashi for their excellent technical assistance with this work.

Funding

This study was performed as a research program of the Project for Development of Innovative Research on Cancer Therapeutics (P-DIRECT; 11039020) and The Japan Agency for Medical Research and Development (AMED; 15cm0106085h0005). This study was supported in part by a grant for Leading Advanced Projects for Medical Innovation (LEAP; 16am0001006h0003) from the Japan Agency for Medical Research and Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Nagano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10147_2020_1673_MOESM1_ESM.tif

Supplementary file1. Fig. S1. Time-dependent receiver operator characteristic (ROC) curve analysis to determine the best cut-off period. Thirty-five months was selected as the best cut-off period from the analysis and based on clinical perspectives. (TIF 638 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakashima-Nakasuga, C., Hazama, S., Suzuki, N. et al. Serum LOX-1 is a novel prognostic biomarker of colorectal cancer. Int J Clin Oncol 25, 1308–1317 (2020). https://doi.org/10.1007/s10147-020-01673-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-020-01673-2

Keywords

Navigation