Skip to main content

Advertisement

Log in

Use of a prognostic risk score that aggregates the FDG-PET/CT SUVmax, tumor size, and histologic group for predicting the prognosis of pStage I lung adenocarcinoma

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

pStage I includes clinicopathologically diverse groups. This study aimed to identify the prognostic factors for pStage I lung adenocarcinoma.

Methods

We retrospectively reviewed 208 patients with pStage I adenocarcinomas who underwent curative resection in our institute between 2006 and 2013. The maximum standardized uptake value (SUVmax) on [F18]-fluoro-deoxy-d-glucose positron emission tomography-computed tomography (PET/CT) was evaluated. Adenocarcinomas were categorized into the following histologic groups: group 0 (minimally invasive adenocarcinoma and lepidic predominant adenocarcinoma), group 1 (papillary predominant adenocarcinoma), and group 2 (acinar predominant adenocarcinoma and all the remaining subtypes). We assessed the relationship between disease-free survival (DFS) and clinicopathological factors.

Results

Multivariate analysis of DFS demonstrated that SUVmax > 3.0 (p < 0.001), total tumor size > 20 mm (p = 0.016), and histologic groups (p < 0.05) were independent prognostic factors. The prognostic risk score (PRS) was calculated using the following equation: PRS = SUVmax (≤ 3.0: 0 point, > 3.0: 2 points) + total tumor size (≤ 20 mm: 0 point, > 20 mm: 1 point) + histologic group (group 0: 0 point, group 1: 1 point, group 2: 2 points). Patients were divided into the following three risk groups: low-risk (PRS 0–2 points, n = 136), intermediate-risk (PRS 3–4 points, n = 49), and high-risk groups (PRS 5 points, n = 13). The 5-year DFS rates were 93.2%, 50.6%, and 30.8% for the low-, intermediate-, and high-risk groups, respectively (p < 0.001).

Conclusions

The PRS aggregating the FDG-PET/CT SUVmax, total tumor size, and histologic group predicts the prognosis of pStage I lung adenocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fu C, Liu Z, Zhu F et al (2016) A meta-analysis: is low-dose computed tomography a superior method for risky lung cancers screening population? Clin Respir J 10:333–341

    Article  PubMed  Google Scholar 

  2. Sawabata N, Miyaoka E, Asamura H et al (2011) Japanese lung cancer registry study of 11,663 surgical cases in 2004: demographic and prognosis changes over decade. J Thorac Oncol 6:1229–1235

    Article  PubMed  Google Scholar 

  3. Masuda M, Committee for Scientific Affairs, The Japanese Association for Thoracic Surgery et al (2016) Thoracic and cardiovascular surgery in Japan during 2014: annual report by the Japanese association for thoracic surgery. Gen Thorac Cardiovasc Surg 64:665–697

    Article  PubMed  PubMed Central  Google Scholar 

  4. Goldstraw P, Crowley J, Chansky K et al (2007) The IASLC lung cancer staging project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours. J Thorac Oncol 2:706–714

    Article  PubMed  Google Scholar 

  5. Yoshizawa A, Sumiyoshi S, Sonobe M et al (2013) Validation of the IASLC/ATS/ERS lung adenocarcinoma classification for prognosis and association with EGFR and KRAS gene mutations: analysis of 440 Japanese patients. J Thorac Oncol 8:52–61

    Article  CAS  PubMed  Google Scholar 

  6. Yang HC, Kim HR, Jheon S et al (2015) Recurrence risk-scoring model for stage I adenocarcinoma of the lung. Ann Surg Oncol 22:4089–4097

    Article  PubMed  Google Scholar 

  7. Uehara H, Tsutani Y, Okumura S et al (2013) Prognostic role of positron emission tomography and high-resolution computed tomography in clinical stage IA lung adenocarcinoma. Ann Thorac Surg 96:1958–1965

    Article  PubMed  Google Scholar 

  8. Kadota K, Colovos C, Suzuki K et al (2012) FDG-PET SUVmax combined with IASLC/ATS/ERS histologic classification improves the prognostic stratification of patients with stage I lung adenocarcinoma. Ann Surg Oncol 19:3598–3605

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nair VS, Krupitskaya Y, Gould MK (2009) Positron emission tomography 18F-fluorodeoxyglucose uptake and prognosis in patients with surgically treated, stage I non-small cell lung cancer: a systematic review. J Thorac Oncol 4:1473–1479

    Article  PubMed  Google Scholar 

  10. Sun Y, Hou L, Yang Y et al (2016) Two-gene signature improves the discriminatory power of IASLC/ATS/ERS classification to predict the survival of patients with early-stage lung adenocarcinoma. Oncol Targets Ther 9:4583–4591

    Article  CAS  Google Scholar 

  11. Yoshizawa A, Motoi N, Riely GJ et al (2011) Impact of proposed IASLC/ATS/ERS classification of lung adenocarcinoma: prognostic subgroups and implications for further revision of staging based on analysis of 514 stage I cases. Mod Pathol 24:653–664

    Article  CAS  PubMed  Google Scholar 

  12. Takahashi Y, Horio H, Hato T et al (2015) Prognostic significance of preoperative neutrophil-lymphocyte ratios in patients with stage I non-small cell lung cancer after complete resection. Ann Surg Oncol 22(Suppl 3):S1324–1331

    Article  PubMed  Google Scholar 

  13. Yoshino I, Kawano D, Oba T et al (2006) Smoking status as a prognostic factor in patients with stage I pulmonary adenocarcinoma. Ann Thorac Surg 81:1189–1193

    Article  PubMed  Google Scholar 

  14. Hamada C, Tanaka F, Ohta M et al (2005) Meta-analysis of postoperative adjuvant chemotherapy with tegafur-uracil in non-small-cell lung cancer. J Clin Oncol 23:4999–5006

    Article  CAS  PubMed  Google Scholar 

  15. Kato H, Ichinose Y, Ohta M et al (2004) A randomized trial of adjuvant chemotherapy with uracil-tegafur for adenocarcinoma of the lung. N Engl J Med 350:1713–1721

    Article  CAS  PubMed  Google Scholar 

  16. Toba H, Kondo K, Sadohara Y et al (2013) 18F-fluorodeoxyglucose positron emission tomography/computed tomography and the relationship between fluorodeoxyglucose uptake and the expression of hypoxia-inducible factor-1alpha, glucose transporter-1 and vascular endothelial growth factor in thymic epithelial tumours. Eur J Cardiothorac Surg 44:e105–112

    Article  PubMed  Google Scholar 

  17. Travis WD, Brambilla E, Noguchi M et al (2011) International association for the study of lung cancer/American thoracic society/European respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 6:244–285

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nakamura H, Saji H, Shinmyo T et al (2015) Close association of IASLC/ATS/ERS lung adenocarcinoma subtypes with glucose-uptake in positron emission tomography. Lung Cancer 87:28–33

    Article  PubMed  Google Scholar 

  19. Russell PA, Wainer Z, Wright GM et al (2011) Does lung adenocarcinoma subtype predict patient survival?: a clinicopathologic study based on the new international association for the study of lung cancer/American thoracic society/European respiratory society international multidisciplinary lung adenocarcinoma classification. J Thorac Oncol 6:1496–1504

    Article  PubMed  Google Scholar 

  20. Watanabe K, Nomori H, Ohtsuka T et al (2006) [f-18]fluorodeoxyglucose positron emission tomography can predict pathological tumor stage and proliferative activity determined by Ki-67 in clinical stage IA lung adenocarcinomas. Jpn J Clin Oncol 36:403–409

    Article  PubMed  Google Scholar 

  21. Paesmans M, Berghmans T, Dusart M et al (2010) Primary tumor standardized uptake value measured on fluorodeoxyglucose positron emission tomography is of prognostic value for survival in non-small cell lung cancer: Update of a systematic review and meta-analysis by the European lung cancer working party for the international association for the study of lung cancer staging project. J Thorac Oncol 5:612–619

    Article  PubMed  Google Scholar 

  22. Gu J, Lu C, Guo J et al (2013) Prognostic significance of the IASLC/ATS/ERS classification in Chinese patients-a single institution retrospective study of 292 lung adenocarcinoma. J Surg Oncol 107:474–480

    Article  PubMed  Google Scholar 

  23. Warth A, Muley T, Meister M et al (2012) The novel histologic international association for the study of lung cancer/American thoracic society/European respiratory society classification system of lung adenocarcinoma is a stage-independent predictor of survival. J Clin Oncol 30:1438–1446

    Article  PubMed  Google Scholar 

  24. Tsuta K, Kawago M, Inoue E et al (2013) The utility of the proposed IASLC/ATS/ERS lung adenocarcinoma subtypes for disease prognosis and correlation of driver gene alterations. Lung Cancer 81:371–376

    Article  PubMed  Google Scholar 

  25. Kadota K, Yeh YC, Sima CS et al (2014) The cribriform pattern identifies a subset of acinar predominant tumors with poor prognosis in patients with stage I lung adenocarcinoma: a conceptual proposal to classify cribriform predominant tumors as a distinct histologic subtype. Mod Pathol 27:690–700

    Article  PubMed  Google Scholar 

  26. Nakazato Y, Maeshima AM, Ishikawa Y et al (2013) Interobserver agreement in the nuclear grading of primary pulmonary adenocarcinoma. J Thorac Oncol 8:736–743

    Article  PubMed  Google Scholar 

  27. Takamochi K, Oh S, Matsunaga T et al (2017) Prognostic impacts of EGFR mutation status and subtype in patients with surgically resected lung adenocarcinoma. J Thorac Cardiovasc Surg 154(1768–1774):e1761

    Google Scholar 

  28. Lin CY, Wu YM, Hsieh MH et al (2017) Prognostic implication of EGFR gene mutations and histological classification in patients with resected stage I lung adenocarcinoma. PLoS ONE 12:e0186567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hung JJ, Yeh YC, Jeng WJ et al (2014) Predictive value of the international association for the study of lung cancer/American thoracic society/European respiratory society classification of lung adenocarcinoma in tumor recurrence and patient survival. J Clin Oncol 32:2357–2364

    Article  PubMed  Google Scholar 

  30. Yanagawa N, Shiono S, Abiko M, Ogata SY, Sato T, Tamura G (2014) The correlation of the international association for the study of lung cancer (IASLC)/American thoracic society (ATS)/European respiratory society (ERS) classification with prognosis and EGFR mutation in lung adenocarcinoma. Ann Thorac Surg 98:453–458

    Article  PubMed  Google Scholar 

  31. Xu CH, Wang W, Wei Y et al (2015) Prognostic value of the new international association for the study of lung cancer/American thoracic society/European respiratory society classification in stage IB lung adenocarcinoma. Eur J Surg Oncol 41:1430–1436

    Article  PubMed  Google Scholar 

  32. Arriagada R, Auperin A, NSCLC Meta-analyses Collaborative Group et al (2010) Adjuvant chemotherapy, with or without postoperative radiotherapy, in operable non-small-cell lung cancer: Two meta-analyses of individual patient data. Lancet 375:1267–1277

    Article  CAS  PubMed  Google Scholar 

  33. Pignon JP, Tribodet H, Scagliotti GV et al (2008) Lung adjuvant cisplatin evaluation: a pooled analysis by the lace collaborative group. J Clin Oncol 26:3552–3559

    Article  PubMed  Google Scholar 

  34. Douillard JY, Rosell R, De Lena M et al (2006) Adjuvant vinorelbine plus cisplatin versus observation in patients with completely resected stage IB-IIIA non-small-cell lung cancer (Adjuvant Navelbine International Trialist Association [ANITA]): a randomised controlled trial. Lancet Oncol 7:719–727

    Article  CAS  PubMed  Google Scholar 

  35. Winton T, Livingston R, Johnson D et al (2005) Vinorelbine plus cisplatin vs. observation in resected non-small-cell lung cancer. N Engl J Med 352:2589–2597

    Article  CAS  PubMed  Google Scholar 

  36. Arriagada R, Bergman B, Dunant A et al (2004) Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. N Engl J Med 350:351–360

    Article  PubMed  Google Scholar 

  37. Detterbeck FC, Boffa DJ, Kim AW, Tanoue LT (2017) The eighth edition lung cancer stage classification. Chest 151:193–203

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Toba.

Ethics declarations

Conflict of interest

No author has any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 kb)

10147_2020_1637_MOESM2_ESM.tif

Online Resource 2. Relationship between the prognostic risk score and OS. The 5-year OS rates were 97.5%, 75.9%, and 44.9% for the low-risk group, intermediate-risk group, and high-risk group, respectively. Significant differences were observed between the low- and intermediate-risk groups and between the low- and high-risk groups (p < 0.05). OS = overall survival

Online Resource 3 Cumulative incidence of recurrence by the prognostic risk score

Supplementary file4 (DOCX 14 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawakita, N., Toba, H., Kawakami, Y. et al. Use of a prognostic risk score that aggregates the FDG-PET/CT SUVmax, tumor size, and histologic group for predicting the prognosis of pStage I lung adenocarcinoma. Int J Clin Oncol 25, 1079–1089 (2020). https://doi.org/10.1007/s10147-020-01637-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-020-01637-6

Keywords

Navigation