Skip to main content

Advertisement

Log in

Low microvascular density at the tumor center is related to the expression of metalloproteases and their inhibitors and with the occurrence of distant metastasis in breast carcinomas

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

The aims of this study were to evaluate the microvascular density (MVD) at the center of breast carcinomas, its relationship with the expression of metalloproteases (MMPs) and their inhibitors (TIMPs), and its connection with the distant metastasis rate.

Methods

An immunohistochemical study of four MMPs and two TIMPs was performed on cancer specimens from 97 women with a histological confirmed diagnosis of early invasive breast cancer.

Results

Expressions of MMP-9 by cancerous cells, or MMP-11 and TIMP-2 by stromal cells, were all negative and significantly associated with MVD, whereas MMP-7 score values were positive and also significantly associated with MVD. However, positive expression of MMP-1 by mononuclear inflammatory cells was significantly associated with MVD. Multivariate analysis demonstrated a significant and inverse relationship between MVD and the occurrence of distant metastasis.

Conclusions

Our data point out the clinical importance of low MVD at the tumor center as an independent prognostic factor of distant metastasis development in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lindmark G, Gerdin B, Sundberg C et al (1996) Prognostic significance of the microvascular count in colorectal cancer. J Clin Oncol 14:461–466

    PubMed  CAS  Google Scholar 

  2. Ribatti D, Ponzoni M (2005) Antiangiogenic strategies in neuroblastoma. Cancer Treat Rev 31:27–34

    Article  PubMed  CAS  Google Scholar 

  3. Shimizu T, Hino K, Tauchi K et al (2000) Predication of axillary lymph node metastasis by intravenous digital subtraction angiography in breast cancer, its correlation with microvascular density. Breast Cancer Res Treat 61:261–269

    Article  PubMed  CAS  Google Scholar 

  4. Zhao ZS, Zhou JL, Yao GY et al (2005) Correlative studies on bFGF mRNA and MMP-9 mRNA expressions with microvascular density, progression, and prognosis of gastric carcinomas. World J Gastroenterol 11:3227–3233

    PubMed  CAS  Google Scholar 

  5. Fernandez-Aguilar S, Jondet M, Simonart T et al (2006) Microvessel and lymphatic density in tubular carcinoma of the breast: comparative study with invasive low-grade ductal carcinoma. Breast 15:782–785

    Article  PubMed  Google Scholar 

  6. Weidner N, Folkman J, Pozza F et al (1992) Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 84:1875–1887

    Article  PubMed  CAS  Google Scholar 

  7. Bossi P, Viale G, Lee AK et al (1995) Angiogenesis in colorectal tumors: microvessel quantitation in adenomas and carcinomas with clinicopathological correlations. Cancer Res 55:5049–5053

    PubMed  CAS  Google Scholar 

  8. Busam KJ, Berwick M, Blessing K et al (1995) Tumor vascularity is not a prognostic factor for malignant melanoma of the skin. Am J Pathol 147:1049–1056

    PubMed  CAS  Google Scholar 

  9. Hillen F, van de Winkel A, Creytens D et al (2006) Proliferating endothelial cells, but not microvessel density, are a prognostic parameter in human cutaneous melanoma. Melanoma Res 16:453–457

    Article  PubMed  Google Scholar 

  10. Marrogi AJ, Travis WD, Welsh JA et al (2000) Nitric oxide synthase, cyclooxygenase 2, and vascular endothelial growth factor in the angiogenesis of non-small cell lung carcinoma. Clin Cancer Res 6:4739–4744

    PubMed  CAS  Google Scholar 

  11. Bhattacharya A, Toth K, Mazurchuk R et al (2004) Lack of microvessels in well-differentiated regions of human head and neck squamous cell carcinoma A253 associated with functional magnetic resonance imaging detectable hypoxia, limited drug delivery, and resistance to irinotecan therapy. Clin Cancer Res 10:8005–8017

    Article  PubMed  CAS  Google Scholar 

  12. Garrido-Laguna I, Uson M, Rajeshkumar NV et al (2011) Tumor engraftment in nude mice and enrichment in stroma-related gene pathways predict poor survival and resistance to gemcitabine in patients with pancreatic cancer. Clin Cancer Res 17:5793–5800

    Article  PubMed  CAS  Google Scholar 

  13. Vaupel P, Thews O, Hoeckel M (2001) Treatment resistance of solid tumors: role of hypoxia and anemia. Med Oncol 18:243–529

    Article  PubMed  CAS  Google Scholar 

  14. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    Article  PubMed  CAS  Google Scholar 

  15. Axelson H, Fredlund E, Ovenberger M et al (2005) Hypoxia-induced dedifferentiation of tumor cells—a mechanism behind heterogeneity and aggressiveness of solid tumors. Semin Cell Dev Biol 16:554–563

    Article  PubMed  CAS  Google Scholar 

  16. Generali D, Berruti A, Brizzi MP et al (2006) Hypoxia-inducible factor-1alpha expression predicts a poor response to primary chemoendocrine therapy and disease-free survival in primary human breast cancer. Clin Cancer Res 12:4562–4568

    Article  PubMed  CAS  Google Scholar 

  17. McCawley LJ, Matrisian LM (2001) Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol 13:534–540

    Article  PubMed  CAS  Google Scholar 

  18. Overall CM, Lopez-Otin C (2002) Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2:657–672

    Article  PubMed  CAS  Google Scholar 

  19. Demers M, Couillard J, Belanger S et al (2005) New roles for matrix metalloproteinases in metastasis. Crit Rev Immunol 25:493–523

    Article  PubMed  CAS  Google Scholar 

  20. Brinckerhoff CE, Rutter JL, Benbow U (2000) Interstitial collagenases as markers of tumor progression. Clin Cancer Res 6:4823–4830

    PubMed  CAS  Google Scholar 

  21. Rundhaug JE (2005) Matrix metalloproteinases and angiogenesis. J Cell Mol Med 9:267–285

    Article  PubMed  CAS  Google Scholar 

  22. O’Reilly MS, Wiederschain D, Stetler-Stevenson WG et al (1999) Regulation of angiostatin production by matrix metalloproteinase-2 in a model of concomitant resistance. J Biol Chem 274:29568–29571

    Article  PubMed  Google Scholar 

  23. Patterson BC, Sang QA (1997) Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type IV collagenase (MMP-9). J Biol Chem 272:28823–28825

    Article  PubMed  CAS  Google Scholar 

  24. Troyanovsky B, Levchenko T, Mansson G et al (2001) Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. J Cell Biol 152:1247–1254

    Article  PubMed  CAS  Google Scholar 

  25. Kalluri R (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3:422–433

    Article  PubMed  CAS  Google Scholar 

  26. Gonzalez LO, Pidal I, Junquera S et al (2007) Overexpression of matrix metalloproteinases and their inhibitors in mononuclear inflammatory cells in breast cancer correlates with metastasis-relapse. Br J Cancer 97:957–963

    Article  PubMed  CAS  Google Scholar 

  27. Vizoso FJ, Gonzalez LO, Corte MD et al (2007) Study of matrix metalloproteinases and their inhibitors in breast cancer. Br J Cancer 96:903–911

    Article  PubMed  CAS  Google Scholar 

  28. McShane LM, Altman DG, Sauerbrei W et al (2005) Reporting recommendations for tumor marker prognostic studies. J Clin Oncol 23:9067–9072

    Article  PubMed  Google Scholar 

  29. Gonzalez L, Corte MD, Vazquez J et al (2008) Study of matrix metalloproteinases and their tissular inhibitors in ductal “in situ” carcinomas of the breast. Histophatology 53:403–415

    Google Scholar 

  30. Parker RL, Huntsman DG, Lesack DW et al (2002) Assessment of interlaboratory variation in the immunohistochemical determination of estrogen receptor status using a breast cancer tissue microarray. Am J Clin Pathol 117:723–728

    Article  PubMed  Google Scholar 

  31. Gonzalez LO, Corte MD, Junquera S et al. (2009) Expression and prognostic significance of metalloproteases and their inhibitors in both luminal and basal-like phenotypes of breast carcinomas. Human Pathol 40:1224–1233

    Google Scholar 

  32. Allred DC, Harvey JM, Berardo M et al (1998) Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol 11:155–168

    PubMed  CAS  Google Scholar 

  33. Uzzan B, Nicolas P, Cucherat M et al (2004) Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis. Cancer Res 64:2941–2955

    Article  PubMed  CAS  Google Scholar 

  34. Vermeulen PB, Gasparini G, Fox SB et al (2002) Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours. Eur J Cancer 38:1564–1579

    Article  PubMed  CAS  Google Scholar 

  35. Fukumura D, Jain RK (2007) Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem 101:937–949

    Article  PubMed  CAS  Google Scholar 

  36. Ribatti D, Vacca A, Dammacco F (2003) New non-angiogenesis dependent pathways for tumour growth. Eur J Cancer 39:1835–1841

    Article  PubMed  CAS  Google Scholar 

  37. Yue WY, Chen ZP (2005) Does vasculogenic mimicry exist in astrocytoma? J Histochem Cytochem 53:997–1002

    Article  PubMed  CAS  Google Scholar 

  38. Traweek ST, Kandalaft PL, Mehta P et al (1991) The human hematopoietic progenitor cell antigen (CD34) in vascular neoplasia. Am J Clin Pathol 96:25–31

    PubMed  CAS  Google Scholar 

  39. van de Rijn M, Hendrickson MR, Rouse RV (1994) CD34 expression by gastrointestinal tract stromal tumors. Hum Pathol 25:766–771

    Article  PubMed  Google Scholar 

  40. Fernandez-Guinea O, Andicoechea A, Gonzalez LO et al (2010) Relationship between morphological features and kinetic patterns of enhancement of the dynamic breast magnetic resonance imaging and clinico-pathological and biological factors in invasive breast cancer. BMC Cancer 10:8

    Article  PubMed  Google Scholar 

  41. Eberhard A, Kahlert S, Goede V et al (2000) Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 60:1388–1393

    PubMed  CAS  Google Scholar 

  42. Graeber TG, Osmanian C, Jacks T et al (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379:88–91

    Article  PubMed  CAS  Google Scholar 

  43. Gordan JD, Simon MC (2007) Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr Opin Genet Dev 17:71–77

    Article  PubMed  CAS  Google Scholar 

  44. Mabjeesh NJ, Amir S (2007) Hypoxia-inducible factor (HIF) in human tumorigenesis. Histol Histopathol 22:559–572

    PubMed  CAS  Google Scholar 

  45. Semenza GL (2000) Surviving ischemia: adaptive responses mediated by hypoxia-inducible factor 1. J Clin Invest 106:809–812

    Article  PubMed  CAS  Google Scholar 

  46. Semenza GL (2002) HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med 8:S62–S67

    Article  PubMed  CAS  Google Scholar 

  47. Choi JY, Jang YS, Min SY et al (2011) Overexpression of MMP-9 and HIF-1alpha in Breast Cancer Cells under Hypoxic Conditions. J Breast Cancer 14:88–95

    Article  PubMed  Google Scholar 

  48. Del Casar JM, Gonzalez LO, Alvarez E et al (2009) Comparative analysis and clinical value of the expression of metalloproteases and their inhibitors by intratumor stromal fibroblasts and those at the invasive front of breast carcinomas. Breast Cancer Res Treat 116:39–52

    Article  PubMed  Google Scholar 

  49. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  PubMed  CAS  Google Scholar 

  50. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Article  PubMed  CAS  Google Scholar 

  51. Turk V, Kos J, Turk B (2004) Cysteine cathepsins (proteases)–on the main stage of cancer? Cancer Cell 5:409–410

    Article  PubMed  CAS  Google Scholar 

  52. Rifkin DB, Mazzieri R, Munger JS et al (1999) Proteolytic control of growth factor availability. Apmis 107:80–85

    Article  PubMed  CAS  Google Scholar 

  53. Manes S, Llorente M, Lacalle RA et al (1999) The matrix metalloproteinase-9 regulates the insulin-like growth factor-triggered autocrine response in DU-145 carcinoma cells. J Biol Chem 274:6935–6945

    Article  PubMed  CAS  Google Scholar 

  54. Noe V, Fingleton B, Jacobs K et al (2001) Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci 114:111–118

    PubMed  CAS  Google Scholar 

  55. Fingleton B, Vargo-Gogola T, Crawford HC et al (2001) Matrilysin [MMP-7] expression selects for cells with reduced sensitivity to apoptosis. Neoplasia 3:459–468

    Article  PubMed  CAS  Google Scholar 

  56. Baker AH, George SJ, Zaltsman AB et al (1999) Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. Br J Cancer 79:1347–1355

    Article  PubMed  CAS  Google Scholar 

  57. Guedez L, McMarlin AJ, Kingma DW et al (2001) Tissue inhibitor of metalloproteinase-1 alters the tumorigenicity of Burkitt’s lymphoma via divergent effects on tumor growth and angiogenesis. Am J Pathol 158:1207–1215

    Article  PubMed  CAS  Google Scholar 

  58. Jiang Y, Goldberg ID, Shi YE (2002) Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene 21:2245–2252

    Article  PubMed  CAS  Google Scholar 

  59. Wurtz SO, Schrohl AS, Sorensen NM et al (2005) Tissue inhibitor of metalloproteinases-1 in breast cancer. Endocr Relat Cancer 12:215–227

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from: FIS-PI070306, Fondo de Inversión Sanitaria del Instituto Carlos III (FIS-Spain) and FICEMU.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Vizoso.

About this article

Cite this article

Fernández-Guinea, O., Álvarez-Cofiño, A., Eiró, N. et al. Low microvascular density at the tumor center is related to the expression of metalloproteases and their inhibitors and with the occurrence of distant metastasis in breast carcinomas. Int J Clin Oncol 18, 629–640 (2013). https://doi.org/10.1007/s10147-012-0428-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-012-0428-2

Keywords

Navigation