Skip to main content

Advertisement

Log in

The Guillain-Mollaret triangle: a key player in motor coordination and control with implications for neurological disorders

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

The dentato-rubro-olivary pathway, also known as the Guillain-Mollaret triangle (GMT) or myoclonic triangle, consists of the dentate nucleus, the red nucleus, and the inferior olivary nucleus (ION). GMT is important for motor coordination and control, and abnormalities in this network can lead to various neurological disorders. The present study followed a systematic approach in conducting a review on GMT studies. The inclusion criteria were limited to human subjects with primary objectives of characterizing and evaluating GMT syndromes, and the methodology used was not a determining factor for eligibility. The search strategy used MeSH terms and keywords relevant to the study’s objective in various databases until August 2022. A total of 76 studies were included in the review after assessing 527 articles for eligibility based on the final inclusion criteria. Most of the studies evaluated the GMT in human subjects, with the majority utilizing magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), or combination of them. The review found that Hypertrophic olivary degeneration (HOD), a common consequence of GMT damage, has diverse underlying causes, including stroke, brainstem cavernous malformations, and structural impairments. Palatal tremor, ocular myoclonus, ataxia, nystagmus, and vertigo were frequently reported symptoms associated with HOD. This systematic review provides comprehensive insights into the association between GMT and various neurological syndromes, shedding light on the diagnostic, etiological, and prognostic aspects of GMT dysfunction. Understanding the role of the GMT and its implications in movement disorders could pave the way for improved treatment options and better management of neurological conditions related to this critical brainstem pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data and materials are available for review upon request.

References

  1. Guillain G (1931) Deux cas de myoclonies synchrones et rythmées vélo-pliaryngo-oculo-diaphragmatiques. Rev Neurol 2:545–546

    Google Scholar 

  2. Turgut AÇ, Tubbs RS, Turgut M (2019) Georges Charles Guillain (1876–1961) and Pierre Mollaret (1898–1987) and their legacy to neuroanatomy: the forgotten triangle of Guillain-Mollaret. Childs Nerv Syst 37:349–350. https://doi.org/10.1007/s00381-018-04033-8

    Article  PubMed  Google Scholar 

  3. Lavezzi AM, Corna M, Matturri L, Santoro F (2009) Neuropathology of the Guillain-Mollaret Triangle (Dentato-Rubro-Olivary Network) in sudden unexplained perinatal death and SIDS. Open Neurol J 3:48–53. https://doi.org/10.2174/1874205x00903010048

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dincer A, Ozyurt O, Kaya D, Kosak E, Ozturk C, Erzen C, Pamir MN (2011) Diffusion tensor imaging of Guillain-Mollaret triangle in patients with hypertrophic olivary degeneration. J Neuroimaging 21:145–151. https://doi.org/10.1111/j.1552-6569.2009.00461.x

    Article  PubMed  Google Scholar 

  5. Elnekiedy A, Naguib N, Hamed W, Mekky J, Mamdouh Hassan HH (2016) MRI and neurological presentation of hypertrophic olivary degeneration. Egypt J Radiol Nucl Med 47:1019–1029. https://doi.org/10.1016/j.ejrnm.2016.04.019

    Article  Google Scholar 

  6. Goyal M, Versnick E, Tuite P, Cyr JS, Kucharczyk W, Montanera W, Willinsky R, Mikulis D (2000) Hypertrophic olivary degeneration: metaanalysis of the temporal evolution of MR findings. AJNR Am J Neuroradiol 21:1073–1077

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Avula S, Spiteri M, Kumar R, Lewis E, Harave S, Windridge D, Ong C, Pizer B (2016) Post-operative pediatric cerebellar mutism syndrome and its association with hypertrophic olivary degeneration. Quant Imaging Med Surg 6:535–544. https://doi.org/10.21037/qims.2016.10.11

    Article  PubMed  PubMed Central  Google Scholar 

  8. Smets G, Lambert J, Tijssen M, Mai C, Decramer T, Vandenberghe W, Van Loon J, Demaerel P (2017) The dentato-rubro-olivary pathway revisited: new MR imaging observations regarding hypertrophic olivary degeneration. Clin Anat 30:543–549. https://doi.org/10.1002/ca.22866

    Article  PubMed  Google Scholar 

  9. Haddaway NR, Page MJ, Pritchard CC, McGuinness LA (2022) PRISMA2020: an R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and open synthesis. Campbell Syst Rev 18:e1230. https://doi.org/10.1002/cl2.1230

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ogut E, Armagan K (2022) Evaluation of the potential impact of medical ozone therapy on Covid-19: a review study. Ozone Sci Eng 45(3):213–231. https://doi.org/10.1080/01919512.2022.2065242

    Article  CAS  Google Scholar 

  11. Ogut E, Karakas O, Aydin DD (2022) Oppenheimer's accessory ossicle and clinical significance: a narrative review. J Orthop Rep 1:100069. https://doi.org/10.1016/j.jorep.2022.100069

    Article  Google Scholar 

  12. Ogut E (2022) The Stieda process of the talus: the anatomical knowledge and clinical significance of an overlooked protrusion. Bull Natl Res Cent 46:280. https://doi.org/10.1186/s42269-022-00968-w

    Article  Google Scholar 

  13. Ogut E (2022) Is the third trochanter of the femur a developmental anomaly, a functional marker, or an evolutionary adaptation? Can Soc Forensic Sci J:1–20. https://doi.org/10.1080/00085030.2022.2104563

  14. Ogut E, Armagan K, Gül Z (2022) The role of syringic acid as a neuroprotective agent for neurodegenerative disorders and future expectations. Metab Brain Dis 37:859–880. https://doi.org/10.1007/s11011-022-00960-3

    Article  PubMed  CAS  Google Scholar 

  15. Karsan N, Reitboeck PG, Lambert C, Omer S (2016) Palatal tremor: 12 cases-the experience of a tertiary neuroscience centre. J Neurol Neurosurg Psychiatry 87:e1.5. https://doi.org/10.1136/jnnp-2016-315106.102

    Article  Google Scholar 

  16. Deusch G, Toro C, Valls-Solé J, Zeffiro T, Zee DS, Hallett M (1994) Symptomatic and essential palatal tremor. Brain 117:775–788. https://doi.org/10.1093/brain/117.4.775

    Article  Google Scholar 

  17. Lee S, Moon HI, Shin J-H (2021) Post-stroke palatal tremor as a clinical predictor of dysphagia and its neuroanatomical correlates in patients with midbrain and pontine lesions. J Neural Transm 128:1863–1872. https://doi.org/10.1007/s00702-021-02417-w

    Article  PubMed  Google Scholar 

  18. Jang L, Borruat F-X (2014) Oculopalatal tremor: variations on a theme by Guillain and Mollaret. Eur Neurol 72:144–149. https://doi.org/10.1159/000360531

    Article  PubMed  Google Scholar 

  19. Kim JS, Moon SY, Choi KD, Kim JH, Sharpe JA (2007) Patterns of ocular oscillation in oculopalatal tremor: imaging correlations. Neurology 68:1128–1135. https://doi.org/10.1212/01.wnl.0000258665.37827.f6

    Article  PubMed  CAS  Google Scholar 

  20. Liao K, Hong S, Zee DS, Optican LM, Leigh RJ (2008) Impulsive head rotation resets oculopalatal tremor: examination of a model. Prog Brain Res 171:227–234. https://doi.org/10.1016/s0079-6123(08)00632-8

    Article  PubMed  Google Scholar 

  21. Shaikh AG, Ghasia FF, DeLong MR, Jinnah HA, Freeman A, Factor SA (2015) Ocular Palatal tremor plus dystonia: new syndromic association. Mov Disord Clin Pract 2:267–270. https://doi.org/10.1002/mdc3.12193

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jabbari B, Rosenberg M, Scherokman B, Gunderson CH, McBurney JW, McClintock W (1987) Effectiveness of trihexyphenidyl against pendular nystagmus and palatal myoclonus: evidence of cholinergic dysfunction. Mov Disord 2:93–98. https://doi.org/10.1002/mds.870020202

    Article  PubMed  CAS  Google Scholar 

  23. Mastaglia FL, Grainger MR, Kakulas BA (1974) Palatal myoclonus and associated movements. Proc Aust Assoc Neurol 11:183–187

    PubMed  CAS  Google Scholar 

  24. Seidman MD, Arenberg JG, Shirwany NA (1999) Palatal myoclonus as a cause of objective tinnitus: a report of six cases and a review of the literature. Ear Nose Throat J 78:292–297

    Article  PubMed  CAS  Google Scholar 

  25. Krause E, Heinen F, Gürkov R (2010) Difference in outcome of botulinum toxin treatment of essential palatal tremor in children and adults. Am J Otolaryngol 31:91–95. https://doi.org/10.1016/j.amjoto.2008.11.007

    Article  PubMed  CAS  Google Scholar 

  26. Samuel M, Torun N, Tuite PJ, Sharpe JA, Lang AE (2004) Progressive ataxia and palatal tremor (PAPT): clinical and MRI assessment with review of palatal tremors. Brain 127:1252–1268. https://doi.org/10.1093/brain/awh137

    Article  PubMed  Google Scholar 

  27. Carr CM, Hunt CH, Kaufmann TJ, Kotsenas AL, Krecke KN, Wood CP (2015) Frequency of bilateral hypertrophic olivary degeneration in a large retrospective cohort. J Neuroimaging 25:289–295. https://doi.org/10.1111/jon.12118

    Article  PubMed  Google Scholar 

  28. Derner M, Drugová B, Druga R (2009) Inferior olive hypertrophy. Cesk Radiol 63:232–237

    Google Scholar 

  29. Hanihara T, Amano N, Takahashi T, Itoh Y, Yagishita S (1998) Hypertrophy of the inferior olivary nucleus in patients with progressive supranuclear palsy. Eur Neurol 39:97–102. https://doi.org/10.1159/000007915

    Article  PubMed  CAS  Google Scholar 

  30. Blanco Ulla M, López Carballeira A, Pumar Cebreiro JM (2015) Imagen por resonancia magnética en la degeneración olivar hipertrófica. Radiología 57:505–511. https://doi.org/10.1016/j.rx.2014.12.008

    Article  PubMed  CAS  Google Scholar 

  31. Conceicao C, Palma T, Cravo I, Graca J, Ribeiro C (2001) Hypertrophic olivary degeneration. Semiology with magnetic resonance. Acta Med Port 14:107–111

    PubMed  CAS  Google Scholar 

  32. Foerch C, Schaller MA, Lapa S, Filipski K, Steinmetz H, Kang J-S, Zöllner JP, Wagner M (2018) Hypertrophe Degeneration der Olive. Nervenarzt 90:609–615. https://doi.org/10.1007/s00115-018-0646-6

    Article  Google Scholar 

  33. Gu CN, Carr CM, Kaufmann TJ, Kotsenas AL, Hunt CH, Wood CP (2015) MRI findings in nonlesional hypertrophic olivary degeneration. J Neuroimaging 25:813–817. https://doi.org/10.1111/jon.12267

    Article  PubMed  CAS  Google Scholar 

  34. Kim SJ, Lee JH, Suh DC (1994) Cerebellar MR changes in patients with olivary hypertrophic degeneration. AJNR Am J Neuroradiol 15:1715–1719

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Kitajima M, Korogi Y, Shimomura O, Sakamoto Y, Hirai T, Miyayama H, Takahashi M (1994) Hypertrophic olivary degeneration: MR imaging and pathologic findings. Radiology 192:539–543. https://doi.org/10.1148/radiology.192.2.8029428

    Article  PubMed  CAS  Google Scholar 

  36. Konno T, Broderick DF, Tacik P, Caviness JN, Wszolek ZK (2016) Hypertrophic olivary degeneration: a clinico-radiologic study. Parkinsonism Relat Disord 28:36–40. https://doi.org/10.1016/j.parkreldis.2016.04.008

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sabat S, Mannering N, Agarwal A (2016) Hypertrophic olivary degeneration: case series and review of literature. J Neurol Sci 370:180–186. https://doi.org/10.1016/j.jns.2016.09.055

    Article  PubMed  Google Scholar 

  38. Suzuki M, Takashima T, Ueda F, Fujinaga Y, Horichi Y, Yamashita J (1999) Olivary degeneration after intracranial haemorrhage or trauma: follow-up MRI. Neuroradiology 41:9–12. https://doi.org/10.1007/s002340050695

    Article  PubMed  CAS  Google Scholar 

  39. Behzadi F, Fiester PJ, Rao D (2021) Bilateral hypertrophic olivary degeneration following brainstem insult: a retrospective review and examination of causative pathology. Neurosci Insights 16:26331055211007445. https://doi.org/10.1177/26331055211007445

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wolin MJ, Trent RG, Lavin PJM, Cornblath WT (1996) Oculopalatal myoclonus after the one-and-a-half syndrome with facial nerve palsy. Ophthalmology 103:177–180. https://doi.org/10.1016/s0161-6420(96)30743-4

    Article  PubMed  CAS  Google Scholar 

  41. Zhang H, Fu Y, Li X, Dong R-F, Yin J-N, He P-P, Gao Y, Wang Y-L (2020) A meta-analysis of case studies and clinical characteristics of hypertrophic olivary degeneration secondary to brainstem infarction. J Integr Neurosci 19(3):507–511. https://doi.org/10.31083/j.jin.2020.03.1238

    Article  PubMed  Google Scholar 

  42. Arora A, Kapoor A, Gupta R, Puri SK (2010) Guillain-Mollaret triangle &hypertrophic olivary degeneration, vol 1. EuroRad, p 8764. https://doi.org/10.1594/EURORAD/CASE.8764

    Book  Google Scholar 

  43. Auffray-Calvier E, Desal HA, Naudou-Giron E, Severin-Fontana S, Cavenaile-Dolez H, Stefan A, Doury E, de Kersaint-Gilly A (2005) Hypertrophic olivary degeneration. MR imaging findings and temporal evolution. J Neuroradiol 32:67–72. https://doi.org/10.1016/s0150-9861(05)83026-3

    Article  PubMed  CAS  Google Scholar 

  44. Biancheri R, Rossi A, Veneselli E, De Grandis E, Striano P, Di Rocco M, Bruno C, Morana G, Mirabelli-Badenier M (2015) Inferior olivary nucleus involvement in pediatric neurodegenerative disorders: does it play a role in neuroimaging pattern-recognition approach? Neuropediatrics 46:104–109. https://doi.org/10.1055/s-0035-1544185

    Article  PubMed  Google Scholar 

  45. Bindu PS, Taly AB, Sonam K, Govindaraju C, Arvinda HR, Gayathri N, Bharath MM, Ranjith D, Nagappa M, Sinha S, Khan NA, Thangaraj K (2014) Bilateral hypertrophic olivary nucleus degeneration on magnetic resonance imaging in children with Leigh and Leigh-like syndrome. Br J Radiol 87:20130478. https://doi.org/10.1259/bjr.20130478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Boesten AJP, Voogd J (1985) Hypertrophy of neurons in the inferior olive after cerebellar ablations in the cat. Neurosci Lett 61:49–54. https://doi.org/10.1016/0304-3940(85)90399-4

    Article  PubMed  CAS  Google Scholar 

  47. Hirano M, Hatzoglou V, Karimi S, Young RJ (2015) Hypertrophic olivary degeneration resulting from posterior fossa masses and their treatments. Clin Imaging 39:787–790. https://doi.org/10.1016/j.clinimag.2015.05.015

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hornyak M, Osborn AG, Couldwell WT (2008) Hypertrophic olivary degeneration after surgical removal of cavernous malformations of the brain stem: report of four cases and review of the literature. Acta Neurochir 150:149–156. https://doi.org/10.1007/s00701-007-1470-0

    Article  PubMed  CAS  Google Scholar 

  49. Jellinger K (1973) Hypertrophy of the inferior olives. Z Neurol 205:153–174. https://doi.org/10.1007/bf00316018

    Article  PubMed  CAS  Google Scholar 

  50. Katsuse O, Dickson D (2004) Inferior olivary hypertrophy is uncommon in progressive supranuclear palsy. Acta Neuropathol 108:143–146. https://doi.org/10.1007/s00401-004-0878-3

    Article  PubMed  Google Scholar 

  51. Martins WA, Marrone LC, Soder RB, Costa JC (2016) Hypertrophic olivary degeneration: unveiling the triangle of Guillain-Mollaret. Arq Neuropsiquiatr 74:426–427. https://doi.org/10.1590/0004-282X20160049

    Article  PubMed  Google Scholar 

  52. Onen MR, Moore K, Cikla U, Ucer M, Schmidt B, Field AS, Baskaya MK (2018) Hypertrophic olivary degeneration: neurosurgical perspective and literature review. World Neurosurg 112:e763–e771. https://doi.org/10.1016/j.wneu.2018.01.150

    Article  PubMed  Google Scholar 

  53. Otto J, Guenther P, Hoffmann K-T (2013) Bilateral hypertrophic olivary degeneration in Wilson disease. Korean J Radiol 14:316–320

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ruigrok TJ, de Zeeuw CI, Voogd J (1990) Hypertrophy of inferior olivary neurons: a degenerative, regenerative or plasticity phenomenon. Eur J Morphol 28:224–239

    PubMed  CAS  Google Scholar 

  55. Sánchez Hernández J, Paniagua Escudero JC, Carreño Morán P, Asensio Calle JF (2013) Hypertrophic olivary degeneration secondary to a Guillain–Mollaret triangle lesion. Neurología 28:59–61. https://doi.org/10.1016/j.nrleng.2011.04.008

    Article  PubMed  Google Scholar 

  56. Sanverdi SE, Oguz KK, Haliloglu G (2012) Hypertrophic olivary degeneration in children: four new cases and a review of the literature with an emphasis on the MRI findings. Br J Radiol 85:511–516. https://doi.org/10.1259/bjr/60727602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Schaller-Paule MA, Steidl E, Shrestha M, Deichmann R, Steinmetz H, Seiler A, Lapa S, Steiner T, Thonke S, Weidauer S, Konczalla J, Hattingen E, Foerch C (2021) Multicenter prospective analysis of hypertrophic olivary degeneration following infratentorial stroke (HOD-IS): evaluation of disease epidemiology, clinical presentation, and MR-imaging aspects. Front Neurol 12:675123. https://doi.org/10.3389/fneur.2021.675123

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shinohara Y, Kinoshita T, Kinoshita F, Kaminou T, Watanabe T, Ogawa T (2013) Hypertrophic olivary degeneration after surgical resection of brain tumors. Acta Radiol 54:462–466. https://doi.org/10.1258/ar.2012.120537

    Article  PubMed  Google Scholar 

  59. Tartaglione T, Izzo G, Alexandre A, Botto A, Di Lella GM, Gaudino S, Caldarelli M, Colosimo C (2015) MRI findings of olivary degeneration after surgery for posterior fossa tumours in children: incidence, time course and correlation with tumour grading. Radiol Med 120:474–482. https://doi.org/10.1007/s11547-014-0477-x

    Article  PubMed  Google Scholar 

  60. Yagura H, Miyai I, Hatakenaka M, Yanagihara T (2007) Inferior olivary hypertrophy is associated with a lower functional state after pontine hemorrhage. Cerebrovasc Dis 24:369–374. https://doi.org/10.1159/000106984

    Article  PubMed  Google Scholar 

  61. Yun J-H, Ahn JS, Park JC, Kwon DH, Kwun BD, Kim CJ (2013) Hypertrophic olivary degeneration following surgical resection or gamma knife radiosurgery of brainstem cavernous malformations: an 11-case series and a review of literature. Acta Neurochir 155:469–476. https://doi.org/10.1007/s00701-012-1567-y

    Article  PubMed  Google Scholar 

  62. Kawata Y, Suzuki T, Kagaya H, Omi R, Shiroto H, Ebina K (1996) An MRI analysis of brain-stem and cerebellar lesions and olivary hypertrophy. Neuroradiology 38:441–443. https://doi.org/10.1007/bf00607269

    Article  PubMed  CAS  Google Scholar 

  63. Ruiz-Sandoval JL, Chiquete-Anaya E, López-Valencia G, González-Lara A, Andrade-Ramos MA, Macías-Reyes H, Jiménez-Ruiz A, Rosas-Razo B (2020) Symptomatic palatal tremor: A descriptive cohort study of 27 cases in a tertiary hospital. Revista Mexicana de Neurociencia 21(5):199–204. https://doi.org/10.24875/rmn.20000019

    Article  Google Scholar 

  64. Schaller-Paule MA, Foerch C, Kluge S, Baumgarten P, Konczalla J, Steinbach JP, Wagner M, Luger A-L (2019) Delayed occurrence of hypertrophic olivary degeneration after therapy of posterior fossa tumors: a single institution retrospective analysis. J Clin Med 8(12):2222. https://doi.org/10.3390/jcm8122222

    Article  PubMed  PubMed Central  Google Scholar 

  65. Uchino A, Hasuo K, Uchida K, Matsumoto S, Tsukamoto Y, Ohno M, Masuda K (1993) Olivary degeneration after cerebellar or brain stem haemorrhage: MRI. Neuroradiology 35:335–338. https://doi.org/10.1007/bf00588362

    Article  PubMed  CAS  Google Scholar 

  66. Matsuo F, Ajax ET (1979) Palatal myoclonus and denervation supersensitivity in the central nervous system. Ann Neurol 5:72–78. https://doi.org/10.1002/ana.410050111

    Article  PubMed  CAS  Google Scholar 

  67. Beylergil SB, Gupta P, Shaikh AG (2020) Does inferior-olive hypersynchrony affect vestibular heading perception? The Cerebellum 20:744–750. https://doi.org/10.1007/s12311-020-01103-z

    Article  Google Scholar 

  68. Fukushima K, Mizuno Y, Takatama M, Okamoto K (2006) Increased neuronal expression of alpha B-crystallin in human olivary hypertrophy. Neuropathology 26:196–200. https://doi.org/10.1111/j.1440-1789.2006.00682.x

    Article  PubMed  Google Scholar 

  69. Kawanami T, Kato T, Llena JF, Hirano A, Sasaki H (1994) Altered synaptophysin-immunoreactive pattern in human olivary hypertrophy. Neurosci Lett 176:178–180. https://doi.org/10.1016/0304-3940(94)90076-0

    Article  PubMed  CAS  Google Scholar 

  70. Takamine K, Okamoto K, Fujita Y, Sakurai A, Takatama M, Gonatas NK (2000) The involvement of the neuronal Golgi apparatus and trans-Golgi network in the human olivary hypertrophy. J Neurol Sci 182:45–50. https://doi.org/10.1016/s0022-510x(00)00447-0

    Article  PubMed  CAS  Google Scholar 

  71. Kumar N, Eggers SDZ, Milone M, Keegan BM (2011) Acquired progressive ataxia and palatal tremor: importance of MRI evidence of hemosiderin deposition and vascular malformations. Parkinsonism Relat Disord 17:565–568. https://doi.org/10.1016/j.parkreldis.2011.04.018

    Article  PubMed  CAS  Google Scholar 

  72. Ogawa K, Kamei S, Ichihara K, Uehara K, Suzuki Y, Uchihara T, Yoshihashi H, Chong J-M (2014) Immunohistochemical study of pseudohypertrophy of the inferior olivary nucleus. Clin Neuropathol 33:68–75. https://doi.org/10.5414/np300594

    Article  PubMed  Google Scholar 

  73. Okamoto K, Hirai S, Lizuka T, Watanabe M (1992) Fundamental morphological changes in human olivary hypertrophy. Pathol Int 42:408–413. https://doi.org/10.1111/j.1440-1827.1992.tb03245.x

    Article  CAS  Google Scholar 

  74. Ogawa K, Mizutani T, Uehara K, Minami M, Suzuki Y, Uchihara T (2010) Pathological study of pseudohypertrophy of the inferior olivary nucleus. Neuropathology 30:15–23. https://doi.org/10.1111/j.1440-1789.2009.01033.x

    Article  PubMed  Google Scholar 

  75. Nishie M, Yoshida Y, Hirata Y, Matsunaga M (2002) Generation of symptomatic palatal tremor is not correlated with inferior olivary hypertrophy. Brain 125:1348–1357. https://doi.org/10.1093/brain/awf126

    Article  PubMed  Google Scholar 

  76. Kesimal U, Karaali K, Senol U (2021) Radiological significance of symmetric central tegmental tract hyperintensity in pediatric patients. Iran J Radiol 18. https://doi.org/10.5812/iranjradiol.108100

  77. Goto N, Kaneko M (1981) Olivary enlargement: chronological and morphometric analyses. Acta Neuropathol 54:275–282. https://doi.org/10.1007/bf00697000

    Article  CAS  Google Scholar 

  78. Sarnat HB, Flores-Sarnat L, Auer RN (2013) Sequence of synaptogenesis in the fetal and neonatal cerebellar system - part 1: Guillain-Mollaret triangle (dentato-rubro-olivo-cerebellar circuit). Dev Neurosci 35:69–81. https://doi.org/10.1159/000350503

    Article  PubMed  CAS  Google Scholar 

  79. Madhavan A, Carr CM, Krecke KN, Wood CP, McKeon A, Dubey D (2021) Association between paraneoplastic rhombencephalitis and hypertrophic olivary degeneration. J Neurol Neurosurg Psychiatry 92:798–800. https://doi.org/10.1136/jnnp-2020-325569

    Article  PubMed  Google Scholar 

  80. Koga M, Tsutsumi A, Shirabe T (1997) The pathogenesis of olivary changes in clioquinol intoxication. Neuropathology 17:290–294. https://doi.org/10.1111/j.1440-1789.1997.tb00055.x

    Article  Google Scholar 

  81. Nagappa M, Bindu PS, Sinha S, Bharath RD, Sandhya M, Saini J, Mathuranath PS, Taly AB (2017) Palatal tremor revisited: disorder with nosological diversity and etiological heterogeneity. Can J Neurol Sci 45:243–247. https://doi.org/10.1017/cjn.2017.273

    Article  PubMed  Google Scholar 

  82. Bulleid L, Hughes T, Leach P (2021) Mollaret's triangle: an important neuroanatomical territory for all clinicians. Surg Neurol Int 12:94. https://doi.org/10.25259/sni_625_2020

    Article  PubMed  PubMed Central  Google Scholar 

  83. Patay Z, Enterkin J, Harreld JH, Yuan Y, Lobel U, Rumboldt Z, Khan R, Boop F (2013) MR Imaging evaluation of inferior olivary nuclei: comparison of postoperative subjects with and without posterior fossa syndrome. Am J Neuroradiol 35:797–802. https://doi.org/10.3174/ajnr.A3762

    Article  PubMed  Google Scholar 

  84. Yecies D, Jabarkheel R, Han M, Kim Y-H, Bruckert L, Shpanskaya K, Perez A, Edwards MSB, Grant GA, Yeom KW (2019) Posterior fossa syndrome and increased mean diffusivity in the olivary bodies. J Neurosurg Pediatr 24:376–381. https://doi.org/10.3171/2019.5.peds1964

    Article  Google Scholar 

  85. Murdoch S, Shah P, Jampana R (2016) The Guillain–Mollaret triangle in action. Pract Neurol 16:243–246. https://doi.org/10.1136/practneurol-2015-001142

    Article  PubMed  Google Scholar 

  86. Zarranz Imirizaldu JJ (2014) Regarding the famous triangle of Guillain-Mollaret. Neurología 29:441–442. https://doi.org/10.1016/j.nrleng.2013.03.003

    Article  PubMed  Google Scholar 

  87. Mollaret M (1944) La meningite endothelio-leucotaire multirecurrent benigne: Syndrome nouveau ou maladie nouvelle? Rev Neurol 76:57–76

    Google Scholar 

  88. Moon SY, Cho SS, Kim YK, Kim SE, Kim JH, Kim JS (2007) Cerebral glucose metabolism in oculopalatal tremor. Eur J Neurol 15(1):42–49. https://doi.org/10.1111/j.1468-1331.2007.01997.x

    Article  PubMed  Google Scholar 

  89. Shaikh AG, Wong AL, Optican LM, Zee DS (2016) Impaired motor learning in a disorder of the inferior olive: is the cerebellum confused? The Cerebellum 16:158–167. https://doi.org/10.1007/s12311-016-0785-x

    Article  Google Scholar 

  90. Lavezzi AM, Farronato G, Mauri M, Santoro F, Matturri L (2011) Common neurological alterations of the dentato-rubro-olivary pathway (Guillain-Mollaret Triangle) in different pathological fields: from palatal myoclonus to sudden unexplained fetal and infant death-a possible interpretation. Eur J Neurol 3:8–14

    Google Scholar 

  91. Raina GB, Cersosimo MG, Folgar SS, Giugni JC, Calandra C, Paviolo JP, Tkachuk VA, Zuñiga Ramirez C, Tschopp AL, Calvo DS, Pellene LA, Uribe Roca MC, Velez M, Giannaula RJ, Fernandez Pardal MM, Micheli FE (2016) Holmes tremor. Neurology 86:931–938. https://doi.org/10.1212/wnl.0000000000002440

    Article  PubMed  PubMed Central  Google Scholar 

  92. Chang S-y, Kim Y, Park SJ (2020) Transsynaptic degeneration of the Guillain-Mollaret triangle after traumatic brain injury. Parkinsonism Relat Disord 78:9–11. https://doi.org/10.1016/j.parkreldis.2020.05.028

    Article  PubMed  Google Scholar 

  93. Choi S-M (2016) Movement disorders following cerebrovascular lesions in cerebellar circuits. J Mov Disord 9:80–88. https://doi.org/10.14802/jmd.16004

    Article  PubMed  PubMed Central  Google Scholar 

  94. Liu Y, Gao B, Miao Y, Dong X (2020) Iron deposits in the red nucleus at long-term follow-up after hypertrophic olivary degeneration. Quant Imaging Med Surg 11:3371–3375

    Article  Google Scholar 

  95. Schaller-Paule MA, Baumgarten P, Seifert V, Wagner M, Steidl E, Hattingen E, Wicke F, Steinbach JP, Foerch C, Konczalla J (2021) A paravermal trans-cerebellar approach to the posterior fossa tumor causes hypertrophic olivary degeneration by dentate nucleus injury. Cancers (Basel) 13:258. https://doi.org/10.3390/cancers13020258

    Article  PubMed  Google Scholar 

  96. Theeranaew W, Thurtell MJ, Loparo K, Shaikh AG (2020) Gabapentin and memantine increases randomness of oscillatory waveform in ocular palatal tremor. J Comput Neurosci 49:319–331. https://doi.org/10.1007/s10827-020-00753-6

    Article  PubMed  Google Scholar 

  97. Surisetti BK, Prasad S, Holla VV, Neeraja K, Kamble N, Netravathi M, Yadav R, Pal PK (2021) Clinical and imaging profile of patients with palatal tremor. Mov Disord Clin Pract 8:435–444. https://doi.org/10.1002/mdc3.13173

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

EO: supervision, project development, data collection, manuscript writing. KA: data collection, manuscript writing. DT: data collection, figure illustration . The authors described their own experience, and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Eren Ogut.

Ethics declarations

Ethical approval

Ethics approval is not required for this review.

Consent to participate

Not applicable.

Consent for publication

All authors consent for publication.

Conflict of interest

The authors declare no competing interests.

Informed consent on studies with human and animal subjects

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogut, E., Armagan, K. & Tufekci, D. The Guillain-Mollaret triangle: a key player in motor coordination and control with implications for neurological disorders. Neurosurg Rev 46, 181 (2023). https://doi.org/10.1007/s10143-023-02086-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10143-023-02086-1

Keywords

Navigation