Skip to main content

Advertisement

Log in

Impaired Motor Learning in a Disorder of the Inferior Olive: Is the Cerebellum Confused?

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

An attractive hypothesis about how the brain learns to keep its motor commands accurate is centered on the idea that the cerebellar cortex associates error signals carried by climbing fibers with simultaneous activity in parallel fibers. Motor learning can be impaired if the error signals are not transmitted, are incorrect, or are misinterpreted by the cerebellar cortex. Learning might also be impaired if the brain is overwhelmed with a sustained barrage of meaningless information unrelated to simultaneously appearing error signals about incorrect performance. We test this concept in subjects with syndrome of oculopalatal tremor (OPT), a rare disease with spontaneous, irregular, roughly pendular oscillations of the eyes thought to reflect an abnormal, synchronous, spontaneous discharge to the cerebellum from the degenerating neurons in the inferior olive. We examined motor learning during a short-term, saccade adaptation paradigm in patients with OPT and found a unique pattern of disturbed adaptation, quite different from the abnormal adaption when the cerebellum is involved directly. Both fast (seconds) and slow (minutes) timescales of learning were impaired. We suggest that the spontaneous, continuous, synchronous output from the inferior olive prevents the cerebellum from receiving the error signals it needs for appropriate motor learning. The important message from this study is that impaired motor adaptation and resultant dysmetria is not the exclusive feature of cerebellar disorders, but it also highlights disorders of the inferior olive and its connections to the cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Robinson DA. Editorial: how the oculomotor system repairs itself. Investig Ophthalmol. 1975;14:413–5.

    CAS  Google Scholar 

  2. Kommerell G, Olivier D, Theopold H. Adaptive programming of phasic and tonic components in saccadic eye movements. Investigations of patients with abducens palsy. Investig Ophthalmol. 1976;15:657–60.

    CAS  Google Scholar 

  3. Leznik E, Makarenko V, Llinas R. Electrotonically mediated oscillatory patterns in neuronal ensembles: an in vitro voltage-dependent dye-imaging study in the inferior olive. J Neurosci. 2002;22:2804–15.

    PubMed  Google Scholar 

  4. Llinas RR, Leznik E, Urbano FJ. Temporal binding via cortical coincidence detection of specific and nonspecific thalamocortical inputs: a voltage-dependent dye-imaging study in mouse brain slices. Proc Natl Acad Sci U S A. 2002;99:449–54. doi:10.1073/pnas.012604899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marr D. A theory of cerebellar cortex. J Physiol. 1969;202:437–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ito M. Cerebellar control of the vestibulo-ocular reflex—around the flocculus hypothesis. Annu Rev Neurosci. 1982;5:275–96. doi:10.1146/annurev.ne.05.030182.001423.

    Article  CAS  PubMed  Google Scholar 

  7. Zheng N, Raman IM. Synaptic inhibition, excitation, and plasticity in neurons of the cerebellar nuclei. Cerebellum. 2010;9:56–66. doi:10.1007/s12311-009-0140-6.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Person AL, Raman IM. Deactivation of L-type Ca current by inhibition controls LTP at excitatory synapses in the cerebellar nuclei. Neuron. 2010;66:550–9. doi:10.1016/j.neuron.2010.04.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Medina JF. A recipe for bidirectional motor learning: using inhibition to cook plasticity in the vestibular nuclei. Neuron. 2010;68:607–9. doi:10.1016/j.neuron.2010.11.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McElvain LE, Bagnall MW, Sakatos A, du Lac S. Bidirectional plasticity gated by hyperpolarization controls the gain of postsynaptic firing responses at central vestibular nerve synapses. Neuron. 2010;68:763–75. doi:10.1016/j.neuron.2010.09.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Menzies JR, Porrill J, Dutia M, Dean P. Synaptic plasticity in medial vestibular nucleus neurons: comparison with computational requirements of VOR adaptation. PLoS One. 2010: 5. doi 10.1371/journal.pone.0013182

  12. Albus JS. A theory of cerebellar function. Math Biosci. 1971;10:25–61.

    Article  Google Scholar 

  13. Kojima Y, Soetedjo R, Fuchs AF. Changes in simple spike activity of some Purkinje cells in the oculomotor vermis during saccade adaptation are appropriate to participate in motor learning. J Neurosci. 2010;30:3715–27. doi:10.1523/JNEUROSCI.4953-09.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kojima Y, Soetedjo R, Fuchs AF. Effect of inactivation and disinhibition of the oculomotor vermis on saccade adaptation. Brain Res. 2011;1401:30–9. doi:10.1016/j.brainres.2011.05.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Soetedjo R, Fuchs AF. Complex spike activity of purkinje cells in the oculomotor vermis during behavioral adaptation of monkey saccades. J Neurosci. 2006;26:7741–55. doi:10.1523/JNEUROSCI.4658-05.2006.

    Article  CAS  PubMed  Google Scholar 

  16. Kording KP, Tenenbaum JB, Shadmehr R. The dynamics of memory as a consequence of optimal adaptation to a changing body. Nat Neurosci. 2007;10:779–86. doi:10.1038/nn1901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carey MR. Synaptic mechanisms of sensorimotor learning in the cerebellum. Curr Opin Neurobiol. 2011;21:609–15. doi:10.1016/j.conb.2011.06.011.

    Article  CAS  PubMed  Google Scholar 

  18. Smith MA, Ghazizadeh A, Shadmehr R. Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol. 2006;4, e179. doi:10.1371/journal.pbio.0040179.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Xu-Wilson M, Chen-Harris H, Zee DS, Shadmehr R. Cerebellar contributions to adaptive control of saccades in humans. J Neurosci. 2009;29:12930–9. doi:10.1523/JNEUROSCI.3115-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barash S, Melikyan A, Sivakov A, Zhang M, Glickstein M, Thier P. Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci. 1999;19:10931–9.

    CAS  PubMed  Google Scholar 

  21. Golla H, Tziridis K, Haarmeier T, Catz N, Barash S, Thier P. Reduced saccadic resilience and impaired saccadic adaptation due to cerebellar disease. Eur J Neurosci. 2008;27:132–44. doi:10.1111/j.1460-9568.2007.05996.x.

    Article  PubMed  Google Scholar 

  22. Takagi M, Zee DS, Tamargo RJ. Effects of lesions of the oculomotor cerebellar vermis on eye movements in primate: smooth pursuit. J Neurophysiol. 2000;83:2047–62.

    CAS  PubMed  Google Scholar 

  23. Takagi M, Zee DS, Tamargo RJ. Effects of lesions of the oculomotor vermis on eye movements in primate: saccades. J Neurophysiol. 1998;80:1911–31.

    CAS  PubMed  Google Scholar 

  24. Criscimagna-Hemminger SE, Bastian AJ, Shadmehr R. Size of error affects cerebellar contributions to motor learning. J Neurophysiol. 2010;103:2275–84. doi:10.1152/jn.00822.2009.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Guillain GM, P. Deux cas de myoclonies synchrones et rhythmées vélo-pharyngo-laryngo-oculo-diaphragmatiques. Le problèm anatomique et physio-pathologique de ce syndrome 1931:545–66.

  26. Robinson DA. A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans Biomed Eng. 1963;10:137–45.

    CAS  PubMed  Google Scholar 

  27. Fujita M, Amagai A, Minakawa F, Aoki M. Selective and delay adaptation of human saccades. Brain Res Cogn Brain Res. 2002;13:41–52. doi:10.1152/jn.00015.2008.

    Article  PubMed  Google Scholar 

  28. Ethier V, Zee DS, Shadmehr R. Spontaneous recovery of motor memory during saccade adaptation. J Neurophysiol. 2008;99:2577–83. doi:10.1152/jn.00015.2008.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shaikh AG, Hong S, Liao K, Tian J, Solomon D, Zee DS, et al. Oculopalatal tremor explained by a model of inferior olivary hypertrophy and cerebellar plasticity. Brain. 2010;133:923–40. doi:10.1093/brain/awp323.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Straube A, Deubel H. Rapid gain adaptation affects the dynamics of saccadic eye movements in humans. Vis Res. 1995;35:3451–8.

    Article  CAS  PubMed  Google Scholar 

  31. Catz N, Dicke PW, Thier P. Cerebellar-dependent motor learning is based on pruning a Purkinje cell population response. Proc Natl Acad Sci U S A. 2008;105:7309–14. doi:10.1073/pnas.0706032105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ethier V, Zee DS, Shadmehr R. Changes in control of saccades during gain adaptation. J Neurosci. 2008;28:13929–37. doi:10.1523/JNEUROSCI.3470-08.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schnier F, Lappe M. Differences in intersaccadic adaptation transfer between inward and outward adaptation. J Neurophysiol. 2011;106:1399–410. doi:10.1152/jn.00236.2011.

    Article  PubMed  Google Scholar 

  34. Abrams RA, Dobkin RS, Helfrich MK. Adaptive modification of saccadic eye movements. J Exp Psychol Hum Percept Perform. 1992;18:922–33.

    Article  CAS  PubMed  Google Scholar 

  35. Lapresle J, Hamida MB. The dentato-olivary pathway. Somatotopic relationship between the dentate nucleus and the contralateral inferior olive. Arch Neurol. 1970;22:135–43.

    Article  CAS  PubMed  Google Scholar 

  36. Nathan PW, Smith MC. The rubrospinal and central tegmental tracts in man. Brain. 1982;105:223–69.

    Article  CAS  PubMed  Google Scholar 

  37. Chen-Harris H, Joiner WM, Ethier V, Zee DS, Shadmehr R. Adaptive control of saccades via internal feedback. J Neurosci. 2008;28:2804–13. doi:10.1523/JNEUROSCI.5300-07.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tian J, Ethier V, Shadmehr R, Fujita M, Zee DS. Some perspectives on saccade adaptation. Ann N Y Acad Sci. 2009;1164:166–72. doi:10.1111/j.1749-6632.2009.03853.x.

    Article  PubMed  Google Scholar 

  39. Criscimagna-Hemminger SE, Shadmehr R. Consolidation patterns of human motor memory. J Neurosci. 2008;28:9610–8. doi:10.1523/JNEUROSCI.3071-08.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Soetedjo R, Kojima Y, Fuchs AF. Complex spike activity in the oculomotor vermis of the cerebellum: a vectorial error signal for saccade motor learning? J Neurophysiol. 2008;100:1949–66. doi:10.1152/jn.90526.2008.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Panouilleres MT, Miall RC, Jenkinson N. The role of the posterior cerebellum in saccadic adaptation: a transcranial direct current stimulation study. J Neurosci. 2015;35:5471–9. doi:10.1523/JNEUROSCI.4064-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Choi KD, Kim HJ, Cho BM, Kim JS. Saccadic adaptation in lateral medullary and cerebellar infarction. Exp Brain Res. 2008;188:475–82. doi:10.1007/s00221-008-1375-z.

    Article  PubMed  Google Scholar 

  43. Waespe W, Baumgartner R. Enduring dysmetria and impaired gain adaptivity of saccadic eye movements in Wallenberg’s lateral medullary syndrome. Brain. 1992;115(Pt 4):1123–46.

    PubMed  Google Scholar 

  44. Shutoh F, Ohki M, Kitazawa H, Itohara S, Nagao S. Memory trace of motor learning shifts transsynaptically from cerebellar cortex to nuclei for consolidation. Neuroscience. 2006;139:767–77. doi:10.1016/j.neuroscience.2005.12.035.

    Article  CAS  PubMed  Google Scholar 

  45. Deuschl G, Toro C, Valls-Sole J, Hallett M. Symptomatic and essential palatal tremor. 3. Abnormal motor learning. J Neurol Neurosurg Psychiatry. 1996;60:520–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT. Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain. 1996;119(Pt 4):1183–98.

    Article  PubMed  Google Scholar 

  47. Gauthier GM, Hofferer JM, Hoyt WF, Stark L. Visual-motor adaptation. Quantitative demonstration in patients with posterior fossa involvement. Arch Neurol. 1979;36:155–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Dr. John Leigh for critical comments and suggestions. This research was selected for the American Academy of Neurology, 2015 Alliance Founders Award. Grants from Gustavus Louis Pfeiffer Foundation (DSZ and AGS), Dystonia Medical Research Foundation (AGS), and NIH EY001849 (DSZ) supported this work. Dr. Optican received NIH/NEI intramural support. The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aasef G. Shaikh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, A.G., Wong, A.L., Optican, L.M. et al. Impaired Motor Learning in a Disorder of the Inferior Olive: Is the Cerebellum Confused?. Cerebellum 16, 158–167 (2017). https://doi.org/10.1007/s12311-016-0785-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-016-0785-x

Keywords

Navigation