Skip to main content

Advertisement

Log in

Endogenous animal models of intracranial aneurysm development: a review

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

The pathogenesis and natural history of intracranial aneurysm (IA) remains poorly understood. To this end, animal models with induced cerebral vessel lesions mimicking human aneurysms have provided the ability to greatly expand our understanding. In this review, we comprehensively searched the published literature to identify studies that endogenously induced IA formation in animals. Studies that constructed aneurysms (i.e., by surgically creating a sac) were excluded. From the eligible studies, we reported information including the animal species, method for aneurysm induction, aneurysm definitions, evaluation methods, aneurysm characteristics, formation rate, rupture rate, and time course. Between 1960 and 2019, 174 articles reported endogenous animal models of IA. The majority used flow modification, hypertension, and vessel wall weakening (i.e., elastase treatment) to induce IAs, primarily in rats and mice. Most studies utilized subjective or qualitative descriptions to define experimental aneurysms and histology to study them. In general, experimental IAs resembled the pathobiology of the human disease in terms of internal elastic lamina loss, medial layer degradation, and inflammatory cell infiltration. After the early 2000s, many endogenous animal models of IA began to incorporate state-of-the-art technology, such as gene expression profiling and 9.4-T magnetic resonance imaging (MRI) in vivo imaging, to quantitatively analyze the biological mechanisms of IA. Future studies aimed at longitudinally assessing IA pathobiology in models that incorporate aneurysm growth will likely have the largest impact on our understanding of the disease. We believe this will be aided by high-resolution, small animal, survival imaging, in situ live-cell imaging, and next-generation omics technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

N/A

References

  1. Vlak MH, Algra A, Brandenburg R, Rinkel GJ (2011) Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol 10(7):626–636

    Article  PubMed  Google Scholar 

  2. Hackenberg KA, Hänggi D, Etminan N (2018) Unruptured intracranial aneurysms: contemporary data and management. Stroke 49(9):2268–2275

    Article  PubMed  Google Scholar 

  3. Strother CM, Graves VB, Rappe A (1992) Aneurysm hemodynamics: an experimental study. Am J Neuroradiol 13(4):1089–1095

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wakhloo AK, Schellhammer F, de Vries J, Haberstroh J, Schumacher M (1994) Self-expanding and balloon-expandable stents in the treatment of carotid aneurysms: an experimental study in a canine model. Am J Neuroradiol 15(3):493–502

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Szikora I, Guterman LR, Wells KM, Hopkins LN (1994) Combined use of stents and coils to treat experimental wide-necked carotid aneurysms: preliminary results. Am J Neuroradiol 15(6):1091–1102

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Brinjikji W, Ding YH, Kallmes DF, Kadirvel R (2016) From bench to bedside: utility of the rabbit elastase aneurysm model in preclinical studies of intracranial aneurysm treatment. J Neurointerv Surg 8(5):521–525

    Article  PubMed  Google Scholar 

  7. Fahed R, Raymond J, Ducroux C, Gentric JC, Salazkin I, Ziegler D, Gevry G, Darsaut TE (2016) Testing flow diversion in animal models: a systematic review. Neuroradiology 58(4):375–382

    Article  PubMed  Google Scholar 

  8. Strange F, Gruter BE, Fandino J, Marbacher S (2020) Preclinical Intracranial Aneurysm Models: A Systematic Review. Brain Sci:10(3)

  9. White JC, Sayre GP, Whisnant JP (1961) Experimental destruction of the media for the production of intracranial arterial aneurysms. J Neurosurg 18:741–745

    Article  CAS  PubMed  Google Scholar 

  10. Hassler O (1963) Experimental carotid ligation followed by aneurysmal formation and other morphological changes in the circle of willis. J Neurosurg 20:1–7

    Article  CAS  PubMed  Google Scholar 

  11. Uchida M (1974) Electron microscopical studies on the arteries of brain basis. II. Saccular aneurysm in rabbit and human cases. Kumamoto Med J 27(3):150–169

    CAS  PubMed  Google Scholar 

  12. Lee J, Berry CL (1978) Cerebral micro-aneurysm formation in the hypertensive rat. J Pathol 124(1):7–11

    Article  CAS  PubMed  Google Scholar 

  13. Kido DK, Gomez DG, Santos-Buch CA, Caston TV, Potts DG (1978) Microradiographic study of cerebral and ocular aneurysms in hypertensive rabbits. Neuroradiology 15(1):21–26

    Article  CAS  PubMed  Google Scholar 

  14. Hashimoto N, Handa H, Hazama F (1978) Experimentally induced cerebral aneurysms in rats. Surg Neurol 10(1):3–8

    CAS  PubMed  Google Scholar 

  15. Hashimoto N, Handa H, Hazama F (1979) Experimentally induced cerebral aneurysms in rats: part II. Surg Neurol 11(3):243–246

    CAS  PubMed  Google Scholar 

  16. Hashimoto N, Handa H, Hazama F (1979) Experimentally induced cerebral aneurysms in rats: Part III. Pathology. Surg Neurol 11(4):299–304

    CAS  PubMed  Google Scholar 

  17. Nagata I, Handa H, Hashimoto N (1979) Experimentally induced cerebral aneurysms in rats: part IV--cerebral angiography. Surg Neurol 12(5):419–424

    CAS  PubMed  Google Scholar 

  18. Hashimoto N, Handa H, Nagata I, Hazama F (1979) Experimental cerebral aneurysms--with reference to the experimental condition and to the etiology (author’s transl). Neurol Med Chir 19(10):999–1003

    Article  CAS  Google Scholar 

  19. Hashimoto N (1979) Experimental inducement of saccular cerebral aneurysms in rats (author’s transl). Nihon geka hokan Archiv fur japanische Chirurgie 48(6):667–678

    CAS  PubMed  Google Scholar 

  20. Nagata I, Handa H, Hashimoto N, Hazama F (1980) Experimentally induced cerebral aneurysms in rats: Part VI. Hypertension Surg Neurol 14(6):477–479

    CAS  PubMed  Google Scholar 

  21. Hashimoto N, Handa H, Nagata I, Hazama F (1980) Experimentally induced cerebral aneurysms in rats: Part V. Relation of hemodynamics in the circle of Willis to formation of aneurysms. Surg Neurol 13(1):41–45

    CAS  PubMed  Google Scholar 

  22. Suzuki S, Robertson JT, White RP, Stadlan EM, Popoff N (1980) Experimental intracranial aneurysms in rats. A gross and microscopic study. J Neurosurg 52(4):494–500

    Article  CAS  PubMed  Google Scholar 

  23. Zhou D, Bao YD, Du ZW, Takeda F, Kanno T (1985) Experimental cerebral aneurysms in rats. Experimental method and effect of estradiol. Chin Med J 98(6):421–426

    CAS  PubMed  Google Scholar 

  24. Alvarez F, Roda JM (1986) Experimental model for induction of cerebral aneurysms in rats. J Neurosurg 65(3):398–400

    Article  CAS  PubMed  Google Scholar 

  25. Kojima M, Handa H, Hashimoto N, Kim C, Hazama F (1986) Early changes of experimentally induced cerebral aneurysms in rats: scanning electron microscopic study. Stroke 17(5):835–841

    Article  CAS  PubMed  Google Scholar 

  26. Hazama F, Kataoka H, Yamada E, Kayembe K, Hashimoto N, Kojima M, Kim C (1986) Early changes of experimentally induced cerebral aneurysms in rats. Light-microscopic study. Am J Pathol 124(3):399–404

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hashimoto N, Kim C, Kikuchi H, Kojima M, Kang Y, Hazama F (1987) Experimental induction of cerebral aneurysms in monkeys. J Neurosurg 67(6):903–905

    Article  CAS  PubMed  Google Scholar 

  28. Roda JM, Alvarez F, Garcia-Villalon AL, Ruiz MR, Gutierrez M, Garcia BM (1988) An increment in unilateral carotid blood flow produces cerebral aneurysms in rats. Acta Neurochir Suppl 43:189–192

    CAS  PubMed  Google Scholar 

  29. Kim C, Kikuchi H, Hashimoto N, Kojima M, Kang Y, Hazama F (1988) Involvement of internal elastic lamina in development of induced cerebral aneurysms in rats. Stroke 19(4):507–511

    Article  CAS  PubMed  Google Scholar 

  30. Kim C, Kikuchi H, Hashimoto N, Hazama F (1989) Histopathological study of induced cerebral aneurysms in primates. Surg Neurol 32(1):45–50

    Article  CAS  PubMed  Google Scholar 

  31. Yamazoe N, Hashimoto N, Kikuchi H, Hazama F (1990) Elastic skeleton of intracranial cerebral aneurysms in rats. Stroke 21(12):1722–1726

    Article  CAS  PubMed  Google Scholar 

  32. Kang Y, Hashimoto N, Kikuchi H, Yamazoe N, Hazama F (1990) Effects of blood coagulation factor XIII on the development of experimental cerebral aneurysms in rats. J Neurosurg 73(2):242–247

    Article  CAS  PubMed  Google Scholar 

  33. Nakatani H, Hashimoto N, Kang Y, Yamazoe N, Kikuchi H, Yamaguchi S, Niimi H (1991) Cerebral blood flow patterns at major vessel bifurcations and aneurysms in rats. J Neurosurg 74(2):258–262

    Article  CAS  PubMed  Google Scholar 

  34. Kim C, Cervos-Navarro J, Kikuchi H, Hashimoto N, Hazama F (1992) Alterations in cerebral vessels in experimental animals and their possible relationship to the development of aneurysms. Surg Neurol 38(5):331–337

    Article  CAS  PubMed  Google Scholar 

  35. Nakatani H, Hashimoto N, Kikuchi H, Yamaguchi S, Niimi H (1993) In vivo flow visualization of induced saccular cerebral aneurysms in rats. Acta Neurochir 122(3-4):244–249

    Article  CAS  PubMed  Google Scholar 

  36. Kim C, Cervos-Navarro J, Kikuchi H, Hashimoto N, Hazama F (1993) Degenerative changes in the internal elastic lamina relating to the development of saccular cerebral aneurysms in rats. Acta Neurochir 121(1-2):76–81

    Article  CAS  PubMed  Google Scholar 

  37. Futami K, Yamashita J, Tachibana O, Higashi S, Ikeda K, Yamashima T (1995) Immunohistochemical alterations of fibronectin during the formation and proliferative repair of experimental cerebral aneurysms in rats. Stroke 26(9):1659–1664

    Article  CAS  PubMed  Google Scholar 

  38. Futami K, Yamashita J, Tachibana O, Kida S, Higashi S, Ikeda K, Yamashima T (1995) Basic fibroblast growth factor may repair experimental cerebral aneurysms in rats. Stroke 26(9):1649–1654

    Article  CAS  PubMed  Google Scholar 

  39. Kondo S, Hashimoto N, Kikuchi H, Hazama F, Nagata I, Kataoka H (1997) Cerebral aneurysms arising at nonbranching sites. An experimental Study. Stroke 28(2):398–403 discussion 03-4

    Article  CAS  PubMed  Google Scholar 

  40. Coutard M, Osborne-Pellegrin M (1997) Genetic susceptibility to experimental cerebral aneurysm formation in the rat. Stroke 28(5):1035–1041 discussion 42

    Article  CAS  PubMed  Google Scholar 

  41. Kondo S, Hashimoto N, Kikuchi H, Hazama F, Nagata I, Kataoka H (1998) Apoptosis of medial smooth muscle cells in the development of saccular cerebral aneurysms in rats. Stroke 29(1):181–188 discussion 89

    Article  CAS  PubMed  Google Scholar 

  42. Futami K, Yamashita J, Higashi S (1998) Do cerebral aneurysms originate at the site of medial defects? Microscopic examinations of experimental aneurysms at the fenestration of the anterior cerebral artery in rats. Surg Neurol 50(2):141–146

    Article  CAS  PubMed  Google Scholar 

  43. Coutard M (1999) Experimental cerebral aneurysms in the female heterozygous Blotchy mouse. Int J Exp Pathol 80(6):357–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fukuda S, Hashimoto N, Naritomi H, Nagata I, Nozaki K, Kondo S, Kurino M, Kikuchi H (2000) Prevention of rat cerebral aneurysm formation by inhibition of nitric oxide synthase. Circulation 101(21):2532–2538

    Article  CAS  PubMed  Google Scholar 

  45. Coutard M, Huang W, Osborne-Pellegrin M (2000) Heritability of intracerebral hemorrhagic lesions and cerebral aneurysms in the rat. Stroke 31(11):2678–2684

    Article  CAS  PubMed  Google Scholar 

  46. Morimoto M, Miyamoto S, Mizoguchi A, Kume N, Kita T, Hashimoto N (2002) Mouse model of cerebral aneurysm: experimental induction by renal hypertension and local hemodynamic changes. Stroke 33(7):1911–1915

    Article  PubMed  Google Scholar 

  47. Zhang D, Zhao J, Sun Y, Wang S, Tai WH, Cochrane DD, Li J (2003) Pathological observation of brain arteries and spontaneous aneurysms in hypertensive rats. Chin Med J 116(3):424–427

    PubMed  Google Scholar 

  48. Sadamasa N, Nozaki K, Hashimoto N (2003) Disruption of gene for inducible nitric oxide synthase reduces progression of cerebral aneurysms. Stroke 34(12):2980–2984

    Article  CAS  PubMed  Google Scholar 

  49. Jamous MA, Nagahiro S, Kitazato KT, Satoh K, Satomi J (2005) Vascular corrosion casts mirroring early morphological changes that lead to the formation of saccular cerebral aneurysm: an experimental study in rats. J Neurosurg 102(3):532–535

    Article  PubMed  Google Scholar 

  50. Jamous MA, Nagahiro S, Kitazato KT, Satomi J, Satoh K (2005) Role of estrogen deficiency in the formation and progression of cerebral aneurysms. Part I: experimental study of the effect of oophorectomy in rats. J Neurosurg 103(6):1046–1051

    Article  CAS  PubMed  Google Scholar 

  51. Jamous MA, Nagahiro S, Kitazato KT, Tamura T, Kuwayama K, Satoh K (2005) Role of estrogen deficiency in the formation and progression of cerebral aneurysms. Part II: experimental study of the effects of hormone replacement therapy in rats. J Neurosurg 103(6):1052–1057

    Article  CAS  PubMed  Google Scholar 

  52. Kaufmann TJ, Marx WF, Kallmes DF (2006) A failure of matrix metalloproteinase inhibition in the prevention of rat intracranial aneurysm formation. Neuroradiology 48(3):190–195

    Article  CAS  PubMed  Google Scholar 

  53. Moriwaki T, Takagi Y, Sadamasa N, Aoki T, Nozaki K, Hashimoto N (2006) Impaired progression of cerebral aneurysms in interleukin-1beta-deficient mice. Stroke 37(3):900–905

    Article  CAS  PubMed  Google Scholar 

  54. Aoki T, Kataoka H, Morimoto M, Nozaki K, Hashimoto N (2007) Macrophage-derived matrix metalloproteinase-2 and -9 promote the progression of cerebral aneurysms in rats. Stroke 38(1):162–169

    Article  CAS  PubMed  Google Scholar 

  55. Sadamasa N, Nozaki K, Takagi Y, Moriwaki T, Kawanabe Y, Ishikawa M, Hashimoto N (2007) Cerebral aneurysm progression suppressed by blockage of endothelin B receptor. J Neurosurg 106(2):330–336

    Article  CAS  PubMed  Google Scholar 

  56. Aoki T, Kataoka H, Moriwaki T, Nozaki K, Hashimoto N (2007) Role of TIMP-1 and TIMP-2 in the progression of cerebral aneurysms. Stroke 38(8):2337–2345

    Article  CAS  PubMed  Google Scholar 

  57. Abruzzo T, Kendler A, Apkarian R, Workman M, Khoury JC, Cloft HJ (2007) Cerebral aneurysm formation in nitric oxide synthase-3 knockout mice. Curr Neurovasc Res 4(3):161–169

    Article  CAS  PubMed  Google Scholar 

  58. Jamous MA, Nagahiro S, Kitazato KT, Tamura T, Aziz HA, Shono M, Satoh K (2007) Endothelial injury and inflammatory response induced by hemodynamic changes preceding intracranial aneurysm formation: experimental study in rats. J Neurosurg 107(2):405–411

    Article  PubMed  Google Scholar 

  59. Aoki T, Kataoka H, Shimamura M, Nakagami H, Wakayama K, Moriwaki T, Ishibashi R, Nozaki K, Morishita R, Hashimoto N (2007) NF-kappaB is a key mediator of cerebral aneurysm formation. Circulation 116(24):2830–2840

    Article  CAS  PubMed  Google Scholar 

  60. Aoki T, Kataoka H, Ishibashi R, Nozaki K, Hashimoto N (2008) Nifedipine inhibits the progression of an experimentally induced cerebral aneurysm in rats with associated down-regulation of NF-kappa B transcriptional activity. Curr Neurovasc Res 5(1):37–45

    Article  CAS  PubMed  Google Scholar 

  61. Aoki T, Kataoka H, Ishibashi R, Nozaki K, Hashimoto N (2008) Simvastatin suppresses the progression of experimentally induced cerebral aneurysms in rats. Stroke 39(4):1276–1285

    Article  CAS  PubMed  Google Scholar 

  62. Sibon I, Mercier N, Darret D, Lacolley P, Lamaziere JM (2008) Association between semicarbazide-sensitive amine oxidase, a regulator of the glucose transporter, and elastic lamellae thinning during experimental cerebral aneurysm development: laboratory investigation. J Neurosurg 108(3):558–566

    Article  CAS  PubMed  Google Scholar 

  63. Sadamasa N, Nozaki K, Kita-Matsuo H, Saito S, Moriwaki T, Aoki T, Kawarazaki S, Kataoka H, Takagi Y, Ishikawa M, Hashimoto N, Kato K (2008) Gene expression during the development of experimentally induced cerebral aneurysms. J Vasc Res 45(4):343–349

    Article  CAS  PubMed  Google Scholar 

  64. Aoki T, Moriwaki T, Takagi Y, Kataoka H, Yang J, Nozaki K, Hashimoto N (2008) The efficacy of apolipoprotein E deficiency in cerebral aneurysm formation. Int J Mol Med 21(4):453–459

    CAS  PubMed  Google Scholar 

  65. Gao L, Hoi Y, Swartz DD, Kolega J, Siddiqui A, Meng H (2008) Nascent aneurysm formation at the basilar terminus induced by hemodynamics. Stroke 39(7):2085–2090

    Article  PubMed  PubMed Central  Google Scholar 

  66. Aoki T, Kataoka H, Ishibashi R, Nozaki K, Hashimoto N, Cathepsin BK, S (2008) are expressed in cerebral aneurysms and promote the progression of cerebral aneurysms. Stroke 39(9):2603–2610

    Article  CAS  PubMed  Google Scholar 

  67. Aoki T, Kataoka H, Ishibashi R, Nozaki K, Hashimoto N (2008) Gene expression profile of the intima and media of experimentally induced cerebral aneurysms in rats by laser-microdissection and microarray techniques. Int J Mol Med 22(5):595–603

    CAS  PubMed  Google Scholar 

  68. Aoki T, Kataoka H, Ishibashi R, Nozaki K, Egashira K, Hashimoto N (2009) Impact of monocyte chemoattractant protein-1 deficiency on cerebral aneurysm formation. Stroke 40(3):942–951

    Article  CAS  PubMed  Google Scholar 

  69. Aoki T, Kataoka H, Ishibashi R, Nakagami H, Nozaki K, Morishita R, Hashimoto N (2009) Pitavastatin suppresses formation and progression of cerebral aneurysms through inhibition of the nuclear factor kappaB pathway. Neurosurgery 64(2):357–365 discussion 65-6

    Article  PubMed  Google Scholar 

  70. Tamura T, Jamous MA, Kitazato KT, Yagi K, Tada Y, Uno M, Nagahiro S (2009) Endothelial damage due to impaired nitric oxide bioavailability triggers cerebral aneurysm formation in female rats. J Hypertens 27(6):1284–1292

    Article  CAS  PubMed  Google Scholar 

  71. Aoki T, Kataoka H, Ishibashi R, Nozaki K, Morishita R, Hashimoto N (2009) Reduced collagen biosynthesis is the hallmark of cerebral aneurysm: contribution of interleukin-1beta and nuclear factor-kappaB. Arterioscler Thromb Vasc Biol 29(7):1080–1086

    Article  CAS  PubMed  Google Scholar 

  72. Aoki T, Nishimura M, Kataoka H, Ishibashi R, Nozaki K, Hashimoto N (2009) Reactive oxygen species modulate growth of cerebral aneurysms: a study using the free radical scavenger edaravone and p47phox(-/-) mice. Lab Investig 89(7):730–741

    Article  CAS  PubMed  Google Scholar 

  73. Tada Y, Kitazato KT, Tamura T et al (2009) Role of mineralocorticoid receptor on experimental cerebral aneurysms in rats. Hypertension (Dallas, Tex : 1979) 54(3):552–557

    Article  CAS  Google Scholar 

  74. Aoki T, Nishimura M, Kataoka H, Ishibashi R, Miyake T, Takagi Y, Morishita R, Hashimoto N (2009) Role of angiotensin II type 1 receptor in cerebral aneurysm formation in rats. Int J Mol Med 24(3):353–359

    CAS  PubMed  Google Scholar 

  75. Nuki Y, Tsou TL, Kurihara C, Kanematsu M, Kanematsu Y, Hashimoto T (2009) Elastase-induced intracranial aneurysms in hypertensive mice. Hypertension (Dallas, Tex : 1979) 54(6):1337–1344

    Article  CAS  Google Scholar 

  76. Eldawoody H, Shimizu H, Kimura N, Saito A, Nakayama T, Takahashi A, Tominaga T (2009) Simplified experimental cerebral aneurysm model in rats: comprehensive evaluation of induced aneurysms and arterial changes in the circle of Willis. Brain Res 1300:159–168

    Article  CAS  PubMed  Google Scholar 

  77. Eldawoody H, Shimizu H, Kimura N, Saito A, Nakayama T, Takahashi A, Tominaga T (2010) Fasudil, a Rho-kinase inhibitor, attenuates induction and progression of cerebral aneurysms: experimental study in rats using vascular corrosion casts. Neurosci Lett 470(1):76–80

    Article  CAS  PubMed  Google Scholar 

  78. Dai D, Ding YH, Kadirvel R, Lewis DA, Kallmes DF (2010) Experience with microaneurysm formation at the basilar terminus in the rabbit elastase aneurysm model. AJNR Am J Neuroradiol 31(2):300–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kimura N, Shimizu H, Eldawoody H, Nakayama T, Saito A, Tominaga T, Takahashi A (2010) Effect of olmesartan and pravastatin on experimental cerebral aneurysms in rats. Brain Res 1322:144–152

    Article  CAS  PubMed  Google Scholar 

  80. Yagi K, Tada Y, Kitazato KT, Tamura T, Satomi J, Nagahiro S (2010) Ibudilast inhibits cerebral aneurysms by down-regulating inflammation-related molecules in the vascular wall of rats. Neurosurgery 66(3):551–559 discussion 59

    Article  PubMed  Google Scholar 

  81. Tada Y, Yagi K, Kitazato KT, Tamura T, Kinouchi T, Shimada K, Matsushita N, Nakajima N, Satomi J, Kageji T, Nagahiro S (2010) Reduction of endothelial tight junction proteins is related to cerebral aneurysm formation in rats. J Hypertens 28(9):1883–1891

    Article  CAS  PubMed  Google Scholar 

  82. Metaxa E, Tremmel M, Natarajan SK, Xiang J, Paluch RA, Mandelbaum M, Siddiqui AH, Kolega J, Mocco J, Meng H (2010) Characterization of critical hemodynamics contributing to aneurysmal remodeling at the basilar terminus in a rabbit model. Stroke 41(8):1774–1782

    Article  PubMed  PubMed Central  Google Scholar 

  83. Aoki T, Nishimura M, Ishibashi R, Kataoka H, Takagi Y, Hashimoto N (2010) Toll-like receptor 4 expression during cerebral aneurysm formation. Laboratory investigation. J Neurosurg 113(4):851–858

    Article  CAS  PubMed  Google Scholar 

  84. Ishibashi R, Aoki T, Nishimura M, Hashimoto N, Miyamoto S (2010) Contribution of mast cells to cerebral aneurysm formation. Curr Neurovasc Res 7(2):113–124

    Article  CAS  PubMed  Google Scholar 

  85. Aoki T, Kataoka H, Nishimura M, Ishibashi R, Morishita R, Miyamoto S (2010) Ets-1 promotes the progression of cerebral aneurysm by inducing the expression of MCP-1 in vascular smooth muscle cells. Gene Ther 17(9):1117–1123

    Article  CAS  PubMed  Google Scholar 

  86. Meng H, Metaxa E, Gao L, Liaw N, Natarajan SK, Swartz DD, Siddiqui AH, Kolega J, Mocco J (2011) Progressive aneurysm development following hemodynamic insult. J Neurosurg 114(4):1095–1103

    Article  PubMed  Google Scholar 

  87. Kanematsu Y, Kanematsu M, Kurihara C, Tada Y, Tsou TL, van Rooijen N, Lawton MT, Young WL, Liang EI, Nuki Y, Hashimoto T (2011) Critical roles of macrophages in the formation of intracranial aneurysm. Stroke 42(1):173–178

    Article  PubMed  Google Scholar 

  88. Kolega J, Gao L, Mandelbaum M, Mocco J, Siddiqui AH, Natarajan SK, Meng H (2011) Cellular and molecular responses of the basilar terminus to hemodynamics during intracranial aneurysm initiation in a rabbit model. J Vasc Res 48(5):429–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Aoki T, Nishimura M, Matsuoka T, Yamamoto K, Furuyashiki T, Kataoka H, Kitaoka S, Ishibashi R, Ishibazawa A, Miyamoto S, Morishita R, Ando J, Hashimoto N, Nozaki K, Narumiya S (2011) PGE(2) -EP(2) signalling in endothelium is activated by haemodynamic stress and induces cerebral aneurysm through an amplifying loop via NF-kappaB. Br J Pharmacol 163(6):1237–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Aoki T, Nishimura M, Kataoka H, Ishibashi R, Nozaki K, Miyamoto S (2011) Complementary inhibition of cerebral aneurysm formation by eNOS and nNOS. Lab Invest 91(4):619–626

    Article  CAS  PubMed  Google Scholar 

  91. Gopal K, Nagarajan P, Raj TA, Jahan P, Ganapathy HS, Mahesh Kumar MJ (2011) Effect of dietary beta carotene on cerebral aneurysm and subarachnoid haemorrhage in the brain apo E-/- mice. J Thromb Thrombolysis 32(3):343–355

    Article  CAS  PubMed  Google Scholar 

  92. Tada Y, Kitazato KT, Yagi K, Shimada K, Matsushita N, Kinouchi T, Kanematsu Y, Satomi J, Kageji T, Nagahiro S (2011) Statins promote the growth of experimentally induced cerebral aneurysms in estrogen-deficient rats. Stroke 42(8):2286–2293

    Article  CAS  PubMed  Google Scholar 

  93. Xu Y, Tian Y, Wei HJ, Chen J, Dong JF, Zacharek A, Zhang JN (2011) Erythropoietin increases circulating endothelial progenitor cells and reduces the formation and progression of cerebral aneurysm in rats. Neuroscience 181:292–299

    Article  CAS  PubMed  Google Scholar 

  94. Xu Y, Tian Y, Wei HJ, Dong JF, Zhang JN (2011) Methionine diet-induced hyperhomocysteinemia accelerates cerebral aneurysm formation in rats. Neurosci Lett 494(2):139–144

    Article  CAS  PubMed  Google Scholar 

  95. Aoki T, Kataoka H, Nishimura M, Ishibashi R, Morishita R, Miyamoto S (2012) Regression of intracranial aneurysms by simultaneous inhibition of nuclear factor-kappaB and Ets with chimeric decoy oligodeoxynucleotide treatment. Neurosurgery 70(6):1534–1543 discussion 43

    Article  PubMed  Google Scholar 

  96. Dolan JM, Sim FJ, Meng H, Kolega J (2012) Endothelial cells express a unique transcriptional profile under very high wall shear stress known to induce expansive arterial remodeling. Am J Physiol Cell Physiol 302(8):C1109–C1118

    Article  CAS  PubMed  Google Scholar 

  97. Cai J, He C, Yuan F, Chen L, Ling F (2012) A novel haemodynamic cerebral aneurysm model of rats with normal blood pressure. J Clin Neurosci 19(1):135–138

    Article  PubMed  Google Scholar 

  98. Ishibashi R, Aoki T, Nishimura M, Miyamoto S (2012) Imidapril inhibits cerebral aneurysm formation in an angiotensin-converting enzyme-independent and matrix metalloproteinase-9-dependent manner. Neurosurgery 70(3):722–730

    Article  PubMed  Google Scholar 

  99. Makino H, Tada Y, Wada K, Liang EI, Chang M, Mobashery S, Kanematsu Y, Kurihara C, Palova E, Kanematsu M, Kitazato K, Hashimoto T (2012) Pharmacological stabilization of intracranial aneurysms in mice: a feasibility study. Stroke 43(9):2450–2456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mandelbaum M, Kolega J, Dolan JM, Siddiqui AH, Meng H (2013) A critical role for proinflammatory behavior of smooth muscle cells in hemodynamic initiation of intracranial aneurysm. PLoS One 8(9):e74357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dolan JM, Meng H, Sim FJ, Kolega J (2013) Differential gene expression by endothelial cells under positive and negative streamwise gradients of high wall shear stress. Am J Physiol Cell Physiol 305(8):C854–C866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ali MS, Starke RM, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, Owens GK, Koch WJ, Greig NH, Dumont AS (2013) TNF-alpha induces phenotypic modulation in cerebral vascular smooth muscle cells: implications for cerebral aneurysm pathology. J Cereb Blood Flow Metab 33(10):1564–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wada K, Makino H, Shimada K, Shikata F, Kuwabara A, Hashimoto T (2014) Translational research using a mouse model of intracranial aneurysm. Transl Stroke Res 5(2):248–251

    Article  PubMed  Google Scholar 

  104. Lee HJ, Yi JS, Lee HJ, Lee IW, Park KC, Yang JH (2013) Dysregulated Expression Profiles of MicroRNAs of Experimentally Induced Cerebral Aneurysms in Rats. J Korean Neurosurg Soc 53(2):72–76

    Article  PubMed  PubMed Central  Google Scholar 

  105. Li MH, Li PG, Huang QL, Ling J (2014) Endothelial injury preceding intracranial aneurysm formation in rabbits. The West Indian Medical Journal 63(2):167–171

    CAS  PubMed  Google Scholar 

  106. Hosaka K, Downes DP, Nowicki KW, Hoh BL (2014) Modified murine intracranial aneurysm model: aneurysm formation and rupture by elastase and hypertension. J Neurointerv Surg 6(6):474–479

    Article  PubMed  Google Scholar 

  107. Tutino VM, Mandelbaum M, Choi H, Pope LC, Siddiqui A, Kolega J, Meng H (2014) Aneurysmal remodeling in the circle of Willis after carotid occlusion in an experimental model. J Cereb Blood Flow Metab 34(3):415–424

    Article  PubMed  Google Scholar 

  108. Tada Y, Wada K, Shimada K, Makino H, Liang EI, Murakami S, Kudo M, Kitazato KT, Nagahiro S, Hashimoto T (2014) Roles of hypertension in the rupture of intracranial aneurysms. Stroke 45(2):579–586

    Article  PubMed  Google Scholar 

  109. Aoki T, Fukuda M, Nishimura M, Nozaki K, Narumiya S (2014) Critical role of TNF-alpha-TNFR1 signaling in intracranial aneurysm formation. Acta Neuropathol Commun 2:34

    Article  PubMed  PubMed Central  Google Scholar 

  110. Tada Y, Wada K, Shimada K et al (2014) Estrogen protects against intracranial aneurysm rupture in ovariectomized mice. Hypertension (Dallas, Tex : 1979) 63(6):1339–1344

    Article  CAS  Google Scholar 

  111. Starke RM, Chalouhi N, Jabbour PM, Tjoumakaris SI, Gonzalez L, Rosenwasser RH, Wada K, Shimada K, Hasan DM, Greig NH, Owens GK, Dumont AS (2014) Critical role of TNF-alpha in cerebral aneurysm formation and progression to rupture. J Neuroinflammation 11:77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Liaw N, Fox JM, Siddiqui AH, Meng H, Kolega J (2014) Endothelial nitric oxide synthase and superoxide mediate hemodynamic initiation of intracranial aneurysms. PLoS One 9(7):e101721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Tada Y, Makino H, Furukawa H, Shimada K, Wada K, Liang EI, Murakami S, Kudo M, Kung DK, Hasan DM, Kitazato KT, Nagahiro S, Lawton MT, Hashimoto T (2014) Roles of estrogen in the formation of intracranial aneurysms in ovariectomized female mice. Neurosurgery 75(6):690–695 discussion 95

    Article  PubMed  Google Scholar 

  114. Li S, Tian Y, Huang X, Zhang Y, Wang D, Wei H, Dong J, Jiang R, Zhang J (2014) Intravenous transfusion of endothelial colony-forming cells attenuates vascular degeneration after cerebral aneurysm induction. Brain Res 1593:65–75

    Article  CAS  PubMed  Google Scholar 

  115. Fukuda M, Aoki T, Manabe T, Maekawa A, Shirakawa T, Kataoka H, Takagi Y, Miyamoto S, Narumiya S (2014) Exacerbation of intracranial aneurysm and aortic dissection in hypertensive rat treated with the prostaglandin F-receptor antagonist AS604872. J Pharmacol Sci 126(3):230–242

    Article  CAS  PubMed  Google Scholar 

  116. Yokoi T, Isono T, Saitoh M, Yoshimura Y, Nozaki K (2014) Suppression of cerebral aneurysm formation in rats by a tumor necrosis factor-alpha inhibitor. J Neurosurg 120(5):1193–1200

    Article  CAS  PubMed  Google Scholar 

  117. Nowicki KW, Hosaka K, He Y, McFetridge PS, Scott EW, Hoh BL (2014) Novel high-throughput in vitro model for identifying hemodynamic-induced inflammatory mediators of cerebral aneurysm formation. Hypertension (Dallas, Tex : 1979) 64(6):1306–1313

    Article  CAS  Google Scholar 

  118. Li S, Wang D, Tian Y, Wei H, Zhou Z, Liu L, Wang D, Dong JF, Jiang R, Zhang J (2015) Aspirin Inhibits Degenerative Changes of Aneurysmal Wall in a Rat Model. Neurochem Res 40(7):1537–1545

    Article  CAS  PubMed  Google Scholar 

  119. Zhao J, Lin X, He C, Yang GY, Ling F (2015) Study of cerebral aneurysms in a modified rat model: from real-time imaging to histological analysis. J Clin Neurosci 22(2):373–377

    Article  PubMed  Google Scholar 

  120. Pena-Silva RA, Chalouhi N, Wegman-Points L et al (2015) Novel role for endogenous hepatocyte growth factor in the pathogenesis of intracranial aneurysms. Hypertension (Dallas, Tex : 1979) 65(3):587–593

    Article  CAS  Google Scholar 

  121. Lee S, Kim IK, Ahn JS, Woo DC, Kim ST, Song S, Koh GY, Kim HS, Jeon BH, Kim I (2015) Deficiency of endothelium-specific transcription factor Sox17 induces intracranial aneurysm. Circulation 131(11):995–1005

    Article  CAS  PubMed  Google Scholar 

  122. Makino H, Hokamura K, Natsume T, Kimura T, Kamio Y, Magata Y, Namba H, Katoh T, Sato S, Hashimoto T, Umemura K (2015) Successful serial imaging of the mouse cerebral arteries using conventional 3-T magnetic resonance imaging. J Cereb Blood Flow Metab 35(9):1523–1527

    Article  PubMed  PubMed Central  Google Scholar 

  123. Chu Y, Wilson K, Gu H, Wegman-Points L, Dooley SA, Pierce GL, Cheng G, Pena Silva RA, Heistad DD, Hasan D (2015) Myeloperoxidase is increased in human cerebral aneurysms and increases formation and rupture of cerebral aneurysms in mice. Stroke 46(6):1651–1656

  124. Tutino VM, Mandelbaum M, Takahashi A, Pope LC, Siddiqui A, Kolega J, Meng H (2015) Hypertension and Estrogen Deficiency Augment Aneurysmal Remodeling in the Rabbit Circle of Willis in Response to Carotid Ligation. Anat Rec (Hoboken) 298(11):1903–1910

    Article  CAS  Google Scholar 

  125. Shimada K, Furukawa H, Wada K, Wei Y, Tada Y, Kuwabara A, Shikata F, Kanematsu Y, Lawton MT, Kitazato KT, Nagahiro S, Hashimoto T (2015) Angiotensin-(1-7) protects against the development of aneurysmal subarachnoid hemorrhage in mice. J Cereb Blood Flow Metab 35(7):1163–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhang M, Ren Y, Wang Y, Wang R, Zhou Q, Peng Y, Li Q, Yu M, Jiang Y (2015) Regulation of smooth muscle contractility by competing endogenous mRNAs in intracranial aneurysms. J Neuropathol Exp Neurol 74(5):411–424

    Article  CAS  PubMed  Google Scholar 

  127. Hasan DM, Starke RM, Gu H et al (2015) Smooth Muscle Peroxisome Proliferator-Activated Receptor gamma Plays a Critical Role in Formation and Rupture of Cerebral Aneurysms in Mice In Vivo. Hypertension (Dallas, Tex : 1979) 66(1):211–220

    Article  CAS  Google Scholar 

  128. Shimada K, Furukawa H, Wada K, Korai M, Wei Y, Tada Y, Kuwabara A, Shikata F, Kitazato KT, Nagahiro S, Lawton MT, Hashimoto T (2015) Protective Role of Peroxisome Proliferator-Activated Receptor-gamma in the Development of Intracranial Aneurysm Rupture. Stroke 46(6):1664–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pena Silva RA, Mitchell IJ, Kung DK et al (2015) Paradoxical Increase in Mortality and Rupture of Intracranial Aneurysms in Microsomal Prostaglandin E2 Synthase Type 1-Deficient Mice: Attenuation by Aspirin. Neurosurgery 77(4):613–620

    Article  PubMed  Google Scholar 

  130. Wu X, Zhang J, Huang Q, Yang P, Chen J, Liu J (2015) Role of Kruppel-like Factor 2 in Intracranial Aneurysm of the Rabbit Model. Cell Mol Biol (Noisy-le-Grand, France) 61(7):33–39

    CAS  Google Scholar 

  131. Wu X, Zhang J, Huang Q, Yang P, Chen J, Liu J (2015) MicroRNA-92a Regulates Expression of Kruppel-like Factor2 in Rabbit Model of Intracranial Aneurysm. Cell Mol Biol (Noisy-le-Grand, France) 61(8):44–48

    CAS  Google Scholar 

  132. Wu C, Liu Y, He M, Zhu L, You C (2016) Single Operation with Simplified Incisions to Build an Experimental Cerebral Aneurysm Model by Induced Hemodynamic Stress and Estrogen Deficiency in Rats. Turkish Neurosurg 26(1):62–68

    Google Scholar 

  133. Jung KH, Chu K, Lee ST, Shin YW, Lee KJ, Park DK, Yoo JS, Kim S, Kim M, Lee SK, Roh JK (2016) Experimental Induction of Cerebral Aneurysms by Developmental Low Copper Diet. J Neuropathol Exp Neurol 75(5):455–463

    Article  CAS  PubMed  Google Scholar 

  134. Tutino VM, Liaw N, Spernyak JA et al (2016) Assessment of Vascular Geometry for Bilateral Carotid Artery Ligation to Induce Early Basilar Terminus Aneurysmal Remodeling in Rats. Curr Neurovasc Res 13(1):82–92

    Article  PubMed  PubMed Central  Google Scholar 

  135. Chalouhi N, Starke RM, Correa T et al (2016) Differential Sex Response to Aspirin in Decreasing Aneurysm Rupture in Humans and Mice. Hypertension (Dallas, Tex : 1979) 68(2):411–417

    Article  CAS  Google Scholar 

  136. Zhu YQ, Dai DY, Xing HX, Ding YH, Kadirvel R, Kallmes DF (2017) Concomitant aneurysm detection in an intracranial dolichoectasia mouse model using a MicroFil polymer perfusion technique. J Neurointerv Surg 9(8):783–786

    Article  PubMed  Google Scholar 

  137. Sawyer DM, Pace LA, Pascale CL, Kutchin AC, O’Neill BE, Starke RM, Dumont AS (2016) Lymphocytes influence intracranial aneurysm formation and rupture: role of extracellular matrix remodeling and phenotypic modulation of vascular smooth muscle cells. J Neuroinflammation 13(1):185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Aoki T, Yamamoto K, Fukuda M, Shimogonya Y, Fukuda S, Narumiya S (2016) Sustained expression of MCP-1 by low wall shear stress loading concomitant with turbulent flow on endothelial cells of intracranial aneurysm. Acta Neuropathol Commun 4(1):48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Lee JA, Marshman LA, Moran CS et al (2016) A small animal model for early cerebral aneurysm pathology. J Clin Neurosci 34:259–263

    Article  PubMed  Google Scholar 

  140. Liu J, Kuwabara A, Kamio Y et al (2016) Human Mesenchymal Stem Cell-Derived Microvesicles Prevent the Rupture of Intracranial Aneurysm in Part by Suppression of Mast Cell Activation via a PGE2-Dependent Mechanism. Stem Cells (Dayton, Ohio) 34(12):2943–2955

    Article  CAS  Google Scholar 

  141. Miyamoto T, Kung DK, Kitazato KT, Yagi K, Shimada K, Tada Y, Korai M, Kurashiki Y, Kinouchi T, Kanematsu Y, Satomi J, Hashimoto T, Nagahiro S (2017) Site-specific elevation of interleukin-1beta and matrix metalloproteinase-9 in the Willis circle by hemodynamic changes is associated with rupture in a novel rat cerebral aneurysm model. J Cereb Blood Flow Metab 37(8):2795–2805

    Article  CAS  PubMed  Google Scholar 

  142. Yamamoto R, Aoki T, Koseki H, Fukuda M, Hirose J, Tsuji K, Takizawa K, Nakamura S, Miyata H, Hamakawa N, Kasuya H, Nozaki K, Hirayama Y, Aramori I, Narumiya S (2017) A sphingosine-1-phosphate receptor type 1 agonist, ASP4058, suppresses intracranial aneurysm through promoting endothelial integrity and blocking macrophage transmigration. Br J Pharmacol 174(13):2085–2101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Miyata H, Koseki H, Takizawa K, Kasuya H, Nozaki K, Narumiya S, Aoki T (2017) T cell function is dispensable for intracranial aneurysm formation and progression. PLoS One 12(4):e0175421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Ikedo T, Minami M, Kataoka H et al (2017) Dipeptidyl Peptidase-4 Inhibitor Anagliptin Prevents Intracranial Aneurysm Growth by Suppressing Macrophage Infiltration and Activation. J Am Heart Assoc:6(6)

  145. Aoki T, Saito M, Koseki H, Tsuji K, Tsuji A, Murata K, Kasuya H, Morita A, Narumiya S, Nozaki K (2017) Macrophage Imaging of Cerebral Aneurysms with Ferumoxytol: an Exploratory Study in an Animal Model and in Patients. J Stroke Cerebrovasc Dis 26(10):2055–2064

    Article  PubMed  Google Scholar 

  146. Liu M, Zhao J, Zhou Q, Peng Y, Zhou Y, Jiang Y (2018) Primary Cilia Deficiency Induces Intracranial Aneurysm. Shock (Augusta, Ga) 49(5):604–611

    Article  Google Scholar 

  147. Aoki T, Frosen J, Fukuda M et al (2017) Prostaglandin E2-EP2-NF-kappaB signaling in macrophages as a potential therapeutic target for intracranial aneurysms. Sci Signal:10(465)

  148. Maekawa H, Tada Y, Yagi K, Miyamoto T, Kitazato KT, Korai M, Satomi J, Hashimoto T, Nagahiro S (2017) Bazedoxifene, a selective estrogen receptor modulator, reduces cerebral aneurysm rupture in Ovariectomized rats. J Neuroinflammation 14(1):197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Wu X, Zhang JZ, Yang PF, Huang QH, Liu JM (2017) Regulation of Kruppel-like factor 2 (KLF2) in the pathogenesis of intracranial aneurysm induced by hemodynamics. Am J Transl Res 9(12):5452–5460

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Kuwabara A, Liu J, Kamio Y, Liu A, Lawton MT, Lee JW, Hashimoto T (2017) Protective Effect of Mesenchymal Stem Cells Against the Development of Intracranial Aneurysm Rupture in Mice. Neurosurgery 81(6):1021–1028

    Article  PubMed  PubMed Central  Google Scholar 

  151. Labeyrie PE, Goulay R, Martinez de Lizarrondo S et al (2017) Vascular Tissue-Type Plasminogen Activator Promotes Intracranial Aneurysm Formation. Stroke 48(9):2574–2582

    Article  CAS  PubMed  Google Scholar 

  152. Starke RM, Thompson JW, Ali MS, Pascale CL, Martinez Lege A, Ding D, Chalouhi N, Hasan DM, Jabbour P, Owens GK, Toborek M, Hare JM, Dumont AS (2018) Cigarette Smoke Initiates Oxidative Stress-Induced Cellular Phenotypic Modulation Leading to Cerebral Aneurysm Pathogenesis. Arterioscler Thromb Vasc Biol 38(3):610–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Suzuki T, Kamio Y, Makino H et al (2018) Prevention Effect of Antiplatelets on Aneurysm Rupture in a Mouse Intracranial Aneurysm Model. Cerebrovasc Dis (Basel, Switzerland) 45(3-4):180–186

    Article  CAS  Google Scholar 

  154. Hoh BL, Rojas K, Lin L et al (2018) Estrogen Deficiency Promotes Cerebral Aneurysm Rupture by Upregulation of Th17 Cells and Interleukin-17A Which Downregulates E-Cadherin. J Am Heart Assoc:7(8)

  155. Quan K, Li S, Wang D, Shi Y, Yang Z, Song J, Tian Y, Liu Y, Fan Z, Zhu W (2018) Berberine Attenuates Macrophages Infiltration in Intracranial Aneurysms Potentially Through FAK/Grp78/UPR Axis. Front Pharmacol 9:565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Kamio Y, Miyamoto T, Kimura T, Mitsui K, Furukawa H, Zhang D, Yokosuka K, Korai M, Kudo D, Lukas RJ, Lawton MT, Hashimoto T (2018) Roles of Nicotine in the Development of Intracranial Aneurysm Rupture. Stroke 49(10):2445–2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ikedo T, Minami M, Kataoka H, Hayashi K, Nagata M, Fujikawa R, Yamazaki F, Setou M, Yokode M, Miyamoto S (2018) Imaging mass spectroscopy delineates the thinned and thickened walls of intracranial aneurysms. Biochem Biophys Res Commun 495(1):332–338

    Article  CAS  PubMed  Google Scholar 

  158. Liu Y, Zhang Y, Zheng Z, Liu X (2018) Investigating the efficacy of a new intravenous (IV) nanoemulsified sevoflurane/arginine formulation for maintenance of general anesthesia for embolization of cerebral aneurysm. J Photochem Photobiol B 187:61–65

    Article  CAS  PubMed  Google Scholar 

  159. Li XG, Wang YB (2019) SRPK1 gene silencing promotes vascular smooth muscle cell proliferation and vascular remodeling via inhibition of the PI3K/Akt signaling pathway in a rat model of intracranial aneurysms. CNS Neurosci Ther 25(2):233–244

    Article  CAS  PubMed  Google Scholar 

  160. Zhang JZ, Chen D, Lv LQ, Xu Z, Li YM, Wang JY, Han KW, Yu MK, Huang CG, Hou LJ (2018) miR-448-3p controls intracranial aneurysm by regulating KLF5 expression. Biochem Biophys Res Commun 505(4):1211–1215

    Article  CAS  PubMed  Google Scholar 

  161. Hoh BL, Fazal HZ, Hourani S, Li M, Lin L, Hosaka K (2018) Temporal cascade of inflammatory cytokines and cell-type populations in monocyte chemotactic protein-1 (MCP-1)-mediated aneurysm healing. J Neurointerv Surg 10(3):301–305

    Article  PubMed  Google Scholar 

  162. Nowicki KW, Hosaka K, Walch FJ, Scott EW, Hoh BL (2018) M1 macrophages are required for murine cerebral aneurysm formation. J Neurointerv Surg 10(1):93–97

    Article  PubMed  Google Scholar 

  163. Zhao W, Zhang H, Su JY (2018) MicroRNA29a contributes to intracranial aneurysm by regulating the mitochondrial apoptotic pathway. Mol Med Rep 18(3):2945–2954

    CAS  PubMed  Google Scholar 

  164. Shikata F, Shimada K, Sato H et al (2019) Potential Influences of Gut Microbiota on the Formation of Intracranial Aneurysm. Hypertension (Dallas, Tex : 1979) 73(2):491–496

    Article  CAS  Google Scholar 

  165. Pascale CL, Martinez AN, Carr C, et al. Treatment with dimethyl fumarate reduces the formation and rupture of intracranial aneurysms: Role of Nrf2 activation. J Cereb Blood Flow Metab 2019: 271678 × 19858888.

  166. Tutino VM, Rajabzadeh-Oghaz H, Chandra AR, Gutierrez LC, Schweser F, Preda M, Chien A, Vakharia K, Ionita C, Siddiqui A, Kolega J (2018) 9.4 T Magnetic Resonance Imaging of the Mouse Circle of Willis Enables Serial Characterization of Flow-Induced Vascular Remodeling by Computational Fluid Dynamics. Curr Neurovasc Res 15(4):312–325

    Article  PubMed  Google Scholar 

  167. Rajabzadeh-Oghaz H, Chandra AR, Gutierrez L, et al. (2019) High-resolution MRI of the mouse cerebral vasculature to study hemodynamic-induced vascular remodeling. SPIE

  168. Miyata H, Shimizu K, Koseki H et al (2019) Real-time Imaging of an Experimental Intracranial Aneurysm in Rats. Neurol Med Chir 59(1):19–26

    Article  Google Scholar 

  169. Wei H, Yang M, Yu K, Dong W, Liang W, Wang Z, Jiang R, Zhang J (2019) Atorvastatin Protects Against Cerebral Aneurysmal Degenerative Pathology by Promoting Endothelial Progenitor Cells (EPC) Mobilization and Attenuating Vascular Deterioration in a Rat Model. Med Sci Monit 25:928–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Suzuki T, Takizawa T, Kamio Y, Qin T, Hashimoto T, Fujii Y, Murayama Y, Patel AB, Ayata C (2019) Noninvasive Vagus Nerve Stimulation Prevents Ruptures and Improves Outcomes in a Model of Intracranial Aneurysm in Mice. Stroke 50(5):1216–1223

    Article  PubMed  PubMed Central  Google Scholar 

  171. Xiao ZP, Zhao JL, Rong WL, Jiang JW, Li MH (2019) Role of Vascular Endothelial-Cadherin and p120-Catenin in the Formation of Experimental Intracranial Aneurysm in Animals. World Neurosurg 128:e177–ee84

    Article  PubMed  Google Scholar 

  172. Ikedo T, Kataoka H, Minami M, Hayashi K, Miyata T, Nagata M, Fujikawa R, Yokode M, Imai H, Matsuda T, Miyamoto S (2019) Sequential Inward Bending of Arterial Bifurcations is Associated with Intracranial Aneurysm Formation. World Neurosurg 129:e361–ee66

    Article  PubMed  Google Scholar 

  173. Ma J, Hou D, Wei Z, Zhu J, Lu H, Li Z, Wang X, Li Y, Qiao G, Liu N (2019) Tanshinone IIA attenuates cerebral aneurysm formation by inhibiting the NFkappaBmediated inflammatory response. Mol Med Rep 20(2):1621–1628

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Yamaguchi T, Miyamoto T, Kitazato KT et al (2019) Time-dependent and site-dependent morphological changes in rupture-prone arteries: ovariectomized rat intracranial aneurysm model. J Neurosurg:1–9

  175. Lai XL, Deng ZF, Zhu XG, Chen ZH (2019) Apc gene suppresses intracranial aneurysm formation and rupture through inhibiting the NF-kappaB signaling pathway mediated inflammatory response. Biosci Rep:39(3)

  176. Wei L, Yang C, Li KQ, Zhong CL, Sun ZY (2019) 3-Aminobenzamide protects against cerebral artery injury and inflammation in rats with intracranial aneurysms. Die Pharmazie 74(3):142–146

    CAS  PubMed  Google Scholar 

  177. Shimizu K, Miyata H, Abekura Y, Oka M, Kushamae M, Kawamata T, Mizutani T, Kataoka H, Nozaki K, Miyamoto S, Aoki T (2019) High-Fat Diet Intake Promotes the Enlargement and Degenerative Changes in the Media of Intracranial Aneurysms in Rats. J Neuropathol Exp Neurol 78(9):798–807

    Article  CAS  PubMed  Google Scholar 

  178. Miyata H, Imai H, Koseki H et al (2019) Vasa vasorum formation is associated with rupture of intracranial aneurysms. J Neurosurg:1–11

  179. Yang Q, Yu D, Zhang Y (2019) beta-Sitosterol Attenuates the Intracranial Aneurysm Growth by Suppressing TNF-alpha-Mediated Mechanism. Pharmacology 104(5-6):303–311

    Article  CAS  PubMed  Google Scholar 

  180. Feng Z, Zhang X, Li L et al (2019) Tumor-associated macrophage-derived exosomal microRNA-155-5p stimulates intracranial aneurysm formation and macrophage infiltration. Clin Sci (London, England : 1979) 133(22):2265–2282

    Article  CAS  Google Scholar 

  181. Fan W, Liu Y, Li C, Qu X, Zheng G, Zhang Q, Pan Z, Wang Y, Rong J (2020) microRNA-331-3p maintains the contractile type of vascular smooth muscle cells by regulating TNF-alpha and CD14 in intracranial aneurysm. Neuropharmacology 164:107858

    Article  PubMed  CAS  Google Scholar 

  182. Vlak MH, Rinkel GJ, Greebe P, Algra A (2013) Independent risk factors for intracranial aneurysms and their joint effect: a case-control study. Stroke 44(4):984–987

    Article  PubMed  Google Scholar 

  183. Chason JL, Hindman WM (1958) Berry aneurysms of the circle of Willis; results of a planned autopsy study. Neurology 8(1):41–44

    Article  CAS  PubMed  Google Scholar 

  184. Alfano JM, Kolega J, Natarajan SK, Xiang J, Paluch RA, Levy EI, Siddiqui AH, Meng H (2013) Intracranial aneurysms occur more frequently at bifurcation sites that typically experience higher hemodynamic stresses. Neurosurgery 73(3):497–505

    Article  PubMed  Google Scholar 

  185. Meng H, Swartz DD, Wang ZJ et al (2006) Development of aneurysm-like remodeling on vessels subjected to impinging flow. FASEB J 20(5):LB116–LLB16

    Article  Google Scholar 

  186. Meng H, Natarajan SK, Gao L, Ionita C, Kolega J, Siddiqui AH, Mocco J (2010) Aneurysmal Changes at the Basilar Terminus in the Rabbit Elastase Aneurysm Model. Am J Neuroradiol 31(3):E35–E36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Meng H, Swartz DD, Wang Z, Hoi Y, Kolega J, Metaxa EM, Szymanski MP, Yamamoto J, Sauvageau E, Levy EI (2006) A model system for mapping vascular responses to complex hemodynamics at arterial bifurcations in vivo. Neurosurgery 59(5):1094–1100 discussion 100-1

    Article  PubMed  Google Scholar 

  188. Meng H, Wang Z, Hoi Y, Gao L, Metaxa E, Swartz DD, Kolega J (2007) Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke 38(6):1924–1931

    Article  PubMed  PubMed Central  Google Scholar 

  189. Wang Z, Kolega J, Hoi Y, Gao L, Swartz DD, Levy EI, Mocco J, Meng H (2009) Molecular alterations associated with aneurysmal remodeling are localized in the high hemodynamic stress region of a created carotid bifurcation. Neurosurgery 65(1):169–177 discussion 77-8

    Article  PubMed  Google Scholar 

  190. Meng H, Wang Z, Hoi Y, Gao L, Metaxa E, Swartz DD, Kolega J (2007) Complex Hemodynamics at the Apex of an Arterial Bifurcation Induces Vascular Remodeling Resembling Cerebral Aneurysm Initiation. Stroke 38(6):1924–1931

    Article  PubMed  PubMed Central  Google Scholar 

  191. Metaxa E, Tremmel M, Natarajan SK, et al., Eds. Hemodynamic Factors Contributing to Intracranial Aneurysm Initiation in a Rabbit Model. Proceedings of the Stroke; 2010. LIPPINCOTT WILLIAMS & WILKINS 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA Year.

  192. Metaxa E, Tremmel M, Xiang J, et al., Eds. High Wall Shear Stress and Positive Wall Shear Stress Gradient Trigger the Initiation of Intracranial Aneurysms. Proceedings of the ASME 2009 Summer Bioengineering Conference; 2009. Year.

  193. Mandelbaum M, Kolega J, Dolan JM, Siddiqui AH, Meng H (2013) A critical role for proinflammatory behavior of smooth muscle cells in hemodynamic initiation of intracranial aneurysm. PLoS One 8(9):e74357–e74e57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Lee H-J, Yi J-S, Lee H-J, Lee I-W, Park K-C, Yang J-H (2013) Dysregulated Expression Profiles of MicroRNAs of Experimentally Induced Cerebral Aneurysms in Rats. J Korean Neurosurg Soc 53(2):72–76

    Article  PubMed  PubMed Central  Google Scholar 

  195. Yang Q, Yu D, Zhang Y (2019) β-Sitosterol Attenuates the Intracranial Aneurysm Growth by Suppressing TNF-α-Mediated Mechanism. Pharmacology 104(5-6):303–311

    Article  CAS  PubMed  Google Scholar 

  196. Etminan N, Rinkel GJ (2016) Unruptured intracranial aneurysms: development, rupture and preventive management. Nat Rev Neurol 12(12):699–713

    Article  PubMed  Google Scholar 

  197. Meng H, Tutino VM, Xiang J, Siddiqui A (2014) High WSS or Low WSS? Complex Interactions of Hemodynamics with Intracranial Aneurysm Initiation, Growth, and Rupture: Toward a Unifying Hypothesis. Am J Neuroradiol 35(7):1254–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Kono K, Masuo O, Nakao N, Meng H (2013) De novo cerebral aneurysm formation associated with proximal stenosis. Neurosurgery 73(6):E1080–E1090

    Article  PubMed  Google Scholar 

  199. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid–structure Interaction Modeling of Aneurysmal Conditions with High and Normal Blood Pressures. Comput Mech 38(4):482–490

    Article  Google Scholar 

  200. Kohn JC, Zhou DW, Bordeleau F, Zhou AL, Mason BN, Mitchell MJ, King MR, Reinhart-King CA (2015) Cooperative effects of matrix stiffness and fluid shear stress on endothelial cell behavior. Biophys J 108(3):471–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Ruiz-Ortega M, Ruperez M, Esteban V et al (2006) Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrol Dial Transplant 21(1):16–20

    Article  CAS  PubMed  Google Scholar 

  202. Frösen J, Piippo A, Paetau A et al (2004) Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke 35(10):2287–2293

    Article  PubMed  Google Scholar 

  203. Hackenberg KAM, Rajabzadeh-Oghaz H, Dreier R, Buchholz BA, Navid A, Rocke DM, Abdulazim A, Hänggi D, Siddiqui A, Macdonald RL, Meng H, Etminan N (2020) Collagen Turnover in Relation to Risk Factors and Hemodynamics in Human Intracranial Aneurysms. Stroke 51(5):1624–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Kataoka K, Taneda M, Asai T, Kinoshita A, Ito M, Kuroda R (1999) Structural fragility and inflammatory response of ruptured cerebral aneurysms. A comparative study between ruptured and unruptured cerebral aneurysms. Stroke 30(7):1396–1401

    Article  CAS  PubMed  Google Scholar 

  205. Kockx MM, De Meyer GR, Bortier H et al (1996) Luminal foam cell accumulation is associated with smooth muscle cell death in the intimal thickening of human saphenous vein grafts. Circulation 94(6):1255–1262

    Article  CAS  PubMed  Google Scholar 

  206. Kockx MM, De Meyer GR, Muhring J, Jacob W, Bult H, Herman AG (1998) Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation 97(23):2307–2315

    Article  CAS  PubMed  Google Scholar 

  207. Uchida M (1974) Electron microscopical studies on the arteries of brain basis. I. Arteriosclerotic changes in human cases and rabbit. Kumamoto Med J 27(3):130–149

    CAS  PubMed  Google Scholar 

  208. Kim ST, Brinjikji W, Kallmes DF (2016) Prevalence of Intracranial Aneurysms in Patients with Connective Tissue Diseases: A Retrospective Study. AJNR Am J Neuroradiol 37(8):1422–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Wiebers DO, Whisnant JP, Huston J 3rd et al (2003) Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 362(9378):103–110

    Article  PubMed  Google Scholar 

  210. Gewaltig MT, Kojda G (2002) Vasoprotection by nitric oxide: mechanisms and therapeutic potential. Cardiovasc Res 55(2):250–260

    Article  CAS  PubMed  Google Scholar 

  211. Schievink WI (1997) Genetics of intracranial aneurysms. Neurosurgery 40(4):651–662 discussion 62-3

    Article  CAS  PubMed  Google Scholar 

  212. Ronkainen A, Hernesniemi J, Puranen M, Niemitukia L, Vanninen R, Ryynänen M, Kuivaniemi H, Tromp G (1997) Familial intracranial aneurysms. Lancet 349(9049):380–384

    Article  CAS  PubMed  Google Scholar 

  213. Greving JP, Wermer MJ, Brown RD Jr et al (2014) Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol 13(1):59–66

    Article  PubMed  Google Scholar 

  214. Abrantes P, Santos MM, Sousa I, Xavier JM, Francisco V, Krug T, Sobral J, Matos M, Martins M, Jacinto A, Coiteiro D, Oliveira SA (2015) Genetic Variants Underlying Risk of Intracranial Aneurysms: Insights from a GWAS in Portugal. PLoS One 10(7):e0133422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Bilguvar K, Yasuno K, Niemela M et al (2008) Susceptibility loci for intracranial aneurysm in European and Japanese populations. Nat Genet 40(12):1472–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Deka R, Koller DL, Lai D, Indugula SR, Sun G, Woo D, Sauerbeck L, Moomaw CJ, Hornung R, Connolly ES, Anderson C, Rouleau G, Meissner I, Bailey-Wilson JE, Huston J III, Brown RD, Kleindorfer DO, Flaherty ML, Langefeld CD, Foroud T, Broderick JP, the FIA Study Investigators (2010) The relationship between smoking and replicated sequence variants on chromosomes 8 and 9 with familial intracranial aneurysm. Stroke 41(6):1132–1137

    Article  PubMed  PubMed Central  Google Scholar 

  217. Foroud T, Koller DL, Lai D, Sauerbeck L, Anderson C, Ko N, Deka R, Mosley TH, Fornage M, Woo D, Moomaw CJ, Hornung R, Huston J, Meissner I, BaileyWilson JE, Langefeld C, Rouleau G, Connolly ES, Worrall BB, Kleindorfer D, Flaherty ML, Martini S, Mackey J, de Los Rios la Rosa F, Brown RD Jr, Broderick JP, the FIA Study Investigators (2012) Genome-wide association study of intracranial aneurysms confirms role of Anril and SOX17 in disease risk. Stroke 43(11):2846–2852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Foroud T, Lai D, Koller D, van’t Hof F, Kurki MI, Anderson CS, Brown RD Jr, Connolly ES, Eriksson JG, Flaherty M, Fornage M, von und zu Fraunberg M, Gaál EI, Laakso A, Hernesniemi J, Huston J, Jääskeläinen JE, Kiemeney LA, Kivisaari R, Kleindorfer D, Ko N, Lehto H, Mackey J, Meissner I, Moomaw CJ, Mosley TH, Moskala M, Niemelä M, Palotie A, Pera J, Rinkel G, Ripke S, Rouleau G, Ruigrok Y, Sauerbeck L, Słowik A, Vermeulen SH, Woo D, Worrall BB, Broderick J (2014) Genome-wide association study of intracranial aneurysm identifies a new association on chromosome 7. Stroke 45(11):3194–3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Kurki MI, Gaal EI, Kettunen J et al (2014) High risk population isolate reveals low frequency variants predisposing to intracranial aneurysms. PLoS Genet 10(1):e1004134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Low SK, Takahashi A, Cha PC, Zembutsu H, Kamatani N, Kubo M, Nakamura Y (2012) Genome-wide association study for intracranial aneurysm in the Japanese population identifies three candidate susceptible loci and a functional genetic variant at EDNRA. Hum Mol Genet 21(9):2102–2110

    Article  CAS  PubMed  Google Scholar 

  221. Yasuno K, Bakircioglu M, Low SK, Bilguvar K, Gaal E, Ruigrok YM, Niemela M, Hata A, Bijlenga P, Kasuya H, Jaaskelainen JE, Krex D, Auburger G, Simon M, Krischek B, Ozturk AK, Mane S, Rinkel GJE, Steinmetz H, Hernesniemi J, Schaller K, Zembutsu H, Inoue I, Palotie A, Cambien F, Nakamura Y, Lifton RP, Gunel M (2011) Common variant near the endothelin receptor type A (EDNRA) gene is associated with intracranial aneurysm risk. Proc Natl Acad Sci U S A 108(49):19707–19712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Yasuno K, Bilguvar K, Bijlenga P, Low SK, Krischek B, Auburger G, Simon M, Krex D, Arlier Z, Nayak N, Ruigrok YM, Niemelä M, Tajima A, von und zu Fraunberg M, Dóczi T, Wirjatijasa F, Hata A, Blasco J, Oszvald A, Kasuya H, Zilani G, Schoch B, Singh P, Stüer C, Risselada R, Beck J, Sola T, Ricciardi F, Aromaa A, Illig T, Schreiber S, van Duijn CM, van den Berg LH, Perret C, Proust C, Roder C, Ozturk AK, Gaál E, Berg D, Geisen C, Friedrich CM, Summers P, Frangi AF, State MW, Wichmann HE, Breteler MMB, Wijmenga C, Mane S, Peltonen L, Elio V, Sturkenboom MCJM, Lawford P, Byrne J, Macho J, Sandalcioglu EI, Meyer B, Raabe A, Steinmetz H, Rüfenacht D, Jääskeläinen JE, Hernesniemi J, Rinkel GJE, Zembutsu H, Inoue I, Palotie A, Cambien F, Nakamura Y, Lifton RP, Günel M (2010) Genome-wide association study of intracranial aneurysm identifies three new risk loci. Nat Genet 42(5):420–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Chyatte D, Bruno G, Desai S, Todor DR (1999) Inflammation and intracranial aneurysms. Neurosurgery 45(5):1137–1146 discussion 46-7

    Article  CAS  PubMed  Google Scholar 

  224. Kataoka K, Taneda M, Asai T, Yamada Y (2000) Difference in nature of ruptured and unruptured cerebral aneurysms. Lancet 355(9199):203

    Article  CAS  PubMed  Google Scholar 

  225. Michel JB (2003) Anoikis in the cardiovascular system: known and unknown extracellular mediators. Arterioscler Thromb Vasc Biol 23(12):2146–2154

    Article  CAS  PubMed  Google Scholar 

  226. Chalouhi N, Hoh BL, Hasan D (2013) Review of cerebral aneurysm formation, growth, and rupture. Stroke 44(12):3613–3622

    Article  PubMed  Google Scholar 

  227. Frösen J, Tulamo R, Paetau A, Laaksamo E, Korja M, Laakso A, Niemelä M, Hernesniemi J (2012) Saccular intracranial aneurysm: pathology and mechanisms. Acta Neuropathol 123(6):773–786

    Article  PubMed  Google Scholar 

  228. Sakaki T, Kohmura E, Kishiguchi T, Yuguchi T, Yamashita T, Hayakawa T (1997) Loss and apoptosis of smooth muscle cells in intracranial aneurysms. Studies with in situ DNA end labeling and antibody against single-stranded DNA. Acta Neurochir 139(5):469–474 discussion 74-5

    Article  CAS  PubMed  Google Scholar 

  229. Dolan JM, Kolega J, Meng H (2013) High wall shear stress and spatial gradients in vascular pathology: a review. Ann Biomed Eng 41(7):1411–1427

    Article  PubMed  Google Scholar 

  230. Sheinberg DL, McCarthy DJ, Elwardany O et al (2019) Endothelial dysfunction in cerebral aneurysms. Neurosurg Focus 47(1):E3

    Article  PubMed  Google Scholar 

  231. Sakakura K, Nakano M, Otsuka F, Ladich E, Kolodgie FD, Virmani R (2013) Pathophysiology of atherosclerosis plaque progression. Heart Lung Circ 22(6):399–411

    Article  PubMed  Google Scholar 

  232. Adamson J, Humphries SE, Ostergaard JR, Voldby B, Richards P, Powell JT (1994) Are cerebral aneurysms atherosclerotic? Stroke 25(5):963–966

    Article  CAS  PubMed  Google Scholar 

  233. Fennell VS, Kalani MY, Atwal G, Martirosyan NL, Spetzler RF (2016) Biology of Saccular Cerebral Aneurysms: A Review of Current Understanding and Future Directions. Front Surg 3:43

    Article  PubMed  PubMed Central  Google Scholar 

  234. Hokari M, Isobe M, Imai T, Chiba Y, Iwamoto N, Isu T (2014) The impact of atherosclerotic factors on cerebral aneurysm is location dependent: aneurysms in stroke patients and healthy controls. J Stroke Cerebrovasc Dis 23(9):2301–2307

    Article  PubMed  Google Scholar 

  235. Meng H, Tutino VM, Xiang J, Siddiqui A (2014) High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. AJNR Am J Neuroradiol 35(7):1254–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Tutino VM, Poppenberg KE, Jiang K, Jarvis JN, Sun Y, Sonig A, Siddiqui AH, Snyder KV, Levy EI, Kolega J, Meng H (2018) Circulating neutrophil transcriptome may reveal intracranial aneurysm signature. PLoS One 13(1):e0191407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Tutino VM, Poppenberg KE, Li L, Shallwani H, Jiang K, Jarvis JN, Sun Y, Snyder KV, Levy EI, Siddiqui AH, Kolega J, Meng H (2018) Biomarkers from circulating neutrophil transcriptomes have potential to detect unruptured intracranial aneurysms. J Transl Med 16(1):373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Pera J, Korostynski M, Krzyszkowski T, Czopek J, Slowik A, Dziedzic T, Piechota M, Stachura K, Moskala M, Przewlocki R, Szczudlik A (2010) Gene expression profiles in human ruptured and unruptured intracranial aneurysms: what is the role of inflammation? Stroke 41(2):224–231

    Article  CAS  PubMed  Google Scholar 

  239. Tromp G, Weinsheimer S, Ronkainen A, Kuivaniemi H (2014) Molecular basis and genetic predisposition to intracranial aneurysm. Ann Med 46(8):597–606

    Article  CAS  PubMed  Google Scholar 

  240. Can A, Castro VM, Ozdemir YH, Dagen S, Yu S, Dligach D, Finan S, Gainer V, Shadick NA, Murphy S, Cai T, Savova G, Dammers R, Weiss ST, du R (2017) Association of intracranial aneurysm rupture with smoking duration, intensity, and cessation. Neurology 89(13):1408–1415

    Article  PubMed  PubMed Central  Google Scholar 

  241. Okamoto K, Horisawa R, Ohno Y (2005) The relationships of gender, cigarette smoking, and hypertension with the risk of aneurysmal subarachnoid hemorrhage: a case-control study in Nagoya, Japan. Ann Epidemiol 15(10):744–748

    Article  PubMed  Google Scholar 

  242. Csiszar A, Podlutsky A, Wolin MS, Losonczy G, Pacher P, Ungvari Z (2009) Oxidative stress and accelerated vascular aging: implications for cigarette smoking. Front Biosci (Landmark Ed) 14:3128–3144

    Article  CAS  Google Scholar 

  243. Rinkel GJE, Djibuti M, Algra A (1998) Gijn Jv. Prevalence and Risk of Rupture of Intracranial Aneurysms. Stroke 29(1):251–256

    Article  CAS  PubMed  Google Scholar 

  244. Seals DR, Jablonski KL, Donato AJ (2011) Aging and vascular endothelial function in humans. Clin Sci (Lond) 120(9):357–375

    Article  CAS  Google Scholar 

  245. Franklin SS, Gustin W, Wong ND et al (1997) Hemodynamic patterns of age-related changes in blood pressure. The Framingham Heart Study Circulation 96(1):308–315

    Article  CAS  PubMed  Google Scholar 

  246. Byers PH, Duvic M, Atkinson M, Robinow M, Smith LT, Krane SM, Greally MT, Ludman M, Matalon R, Pauker S, Quanbeck D, Schwarze U (1997) Ehlers-Danlos syndrome type VIIA and VIIB result from splice-junction mutations or genomic deletions that involve exon 6 in the COL1A1 and COL1A2 genes of type I collagen. Am J Med Genet 72(1):94–105

    Article  CAS  PubMed  Google Scholar 

  247. Caranci F, Briganti F, Cirillo L, Leonardi M, Muto M (2013) Epidemiology and genetics of intracranial aneurysms. Eur J Radiol 82(10):1598–1605

    Article  CAS  PubMed  Google Scholar 

  248. Strong MJ, Amenta PS, Dumont AS, Medel R (2015) The role of leukocytes in the formation and rupture of intracranial aneurysms. Neuroimmunology and Neuroinflammation 2:107–114

    Article  CAS  Google Scholar 

  249. Gounis MJ, Ughi GJ, Marosfoi M, et al. Intravascular Optical Coherence Tomography for Neurointerventional Surgery. Stroke 2018: Strokeaha118022315.

Download references

Acknowledgements

The authors would like to thank Liza Gutierrez, MD, LVT, at the Canon Stroke and Vascular Research Center for stimulating discussions during the drafting of this work.

Code availability

N/A

Author information

Authors and Affiliations

Authors

Contributions

VMT, MM, NL, HM, and JK designed and conceived the article; VMT, HR-O, SSV, KEP, MM, and NL acquired the data; VMT, HR-O, MM, NL, and JK analyzed and interpreted the data; VMT, HR-O, MM, NL, HM, and JK drafted the article; VMT, HR-O, KEP, MW, AHS, MM, NL, HM, and JK critically revised the manuscript; all authors approved the article.

Corresponding author

Correspondence to Vincent M. Tutino.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

VMT—Principal investigator: National Science Foundation Award No. 1746694, NIH NINDS award R43 NS115314-0, Clinical and Translational Science Institute grant. Co-founder: Neurovascular Diagnostics, Inc.

AHS—Financial Interest/Investor/Stock Options/Ownership: Amnis Therapeutics, Apama Medical, BlinkTBI, Inc, Buffalo Technology Partners, Inc., Cardinal Health, Cerebrotech Medical Systems, Inc, Claret Medical, Cognition Medical, Endostream Medical, Ltd, Imperative Care, International Medical Distribution Partners, Rebound Therapeutics Corp., Silk Road Medical, StimMed, Synchron, Three Rivers Medical, Inc., Viseon Spine, Inc. Consultant/Advisory Board: Amnis Therapeutics, Boston Scientific, Canon Medical Systems USA, Inc., Cerebrotech Medical Systems, Inc., Cerenovus, Claret Medical, Corindus, Inc., Endostream Medical, Ltd, Guidepoint Global Consulting, Imperative Care, Integra, Medtronic, Micro- Vention, Northwest University—DSMB Chair for HEAT Trial, Penumbra, Rapid Medical, Rebound Therapeutics Corp., Silk Road Medical, StimMed, Stryker, Three Rivers Medical, Inc., VasSol, W.L. Gore & Associates. National PI/Steering Committees: Cerenovus LARGE Trial and ARISE II Trial, Medtronic SWIFT PRIME and SWIFT DIRECT Trials, MicroVention FRED Trial & CONFIDENCE Study, MUSC POSITIVE Trial, Penumbra 3D Separator Trial, COMPASS Trial, INVEST Trial. Principal investigator: Cummings Foundation grant.

HM—Principal investigator NIH grant R01NS064592 and NIH grant R01NS091075. Co-founder: Neurovascular Diagnostics, Inc.

HR-O, SSV, KEP, MW, MM, NL, JK declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 343 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tutino, V.M., Rajabzadeh-Oghaz, H., Veeturi, S.S. et al. Endogenous animal models of intracranial aneurysm development: a review. Neurosurg Rev 44, 2545–2570 (2021). https://doi.org/10.1007/s10143-021-01481-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-021-01481-w

Keywords

Navigation