Skip to main content
Log in

Quantification and comparison of neurosurgical approaches in the preclinical setting: literature review

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

There is a growing awareness of the need for evidence-based surgery and of the issues that are specific to research in surgery. Well-conducted anatomical studies can represent the first, preclinical step for evidence-based surgical innovation and evaluation. In the last two decades, various reports have quantified and compared neurosurgical approaches in the anatomy laboratory using different methods and technology. The aim of this study was to critically review these papers. A PubMed and Scopus search was performed to select articles that quantified and compared different neurosurgical approaches in the preclinical setting. The basic characteristics that anatomically define a surgical approach were defined. Each study was analyzed for measured features and quantification method and technique. Ninety-nine papers, published from 1990 to 2013, were included in this review. A heterogeneous use of terms to define the features of a surgical approach was evident. Different methods to study these features have been reported; they are generally based on quantification of distances, angles, and areas. Measuring tools have evolved from the simple ruler to frameless stereotactic devices. The reported methods have each specific advantages and limits; a common limitation is the lack of 3D visualization and surgical volume quantification. There is a need for a uniform nomenclature in anatomical studies. Frameless stereotactic devices provide a powerful tool for anatomical studies. Volume quantification and 3D visualization of the surgical approach is not provided with most available methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Acharya R, Shaya M, Kumar R, Caldito GC, Nanda A (2004) Quantification of the advantages of the extended frontal approach to skull base. Skull Base 14(3):133–142. doi:10.1055/s-2004-832253, discussion 141–132

    Article  PubMed  PubMed Central  Google Scholar 

  2. Acikbas SC, Tuncer R, Demirez I, Rahat O, Kazan S, Sindel M, Saveren M (1997) The effect of condylectomy on extreme lateral transcondylar approach to the anterior foramen magnum. Acta Neurochir 139(6):546–550

    Article  CAS  PubMed  Google Scholar 

  3. Agrawal A, Cavalcanti DD, Garcia-Gonzalez U, Chang SW, Crawford NR, Sonntag VK, Spetzler RF, Preul MC (2010) Comparison of extraoral and transoral approaches to the craniocervical junction: morphometric and quantitative analysis. World Neurosurg 74(1):178–188. doi:10.1016/j.wneu.2010.03.034

    Article  PubMed  Google Scholar 

  4. Alaywan M, Sindou M (1990) Fronto-temporal approach with orbito-zygomatic removal. Surgical anatomy. Acta Neurochir 104(3–4):79–83

    Article  CAS  PubMed  Google Scholar 

  5. Alvernia JE, Lanzino G, Melgar M, Sindou MP, Mertens P (2009) Is exposure of the superior sagittal sinus necessary in the interhemispheric approach? Neurosurgery 65(5):962–964. doi:10.1227/01.NEU.0000349210.98919.88, discussion 964–965

    Article  PubMed  Google Scholar 

  6. Ambekar S, Amene C, Sonig A, Guthikonda B, Nanda A (2013) Quantitative comparison of retrosigmoid intradural suprameatal approach and retrosigmoid transtentorial approach: implications for tumors in the petroclival region. J Neurol Surg Part B, Skull base 74(5):300–304. doi:10.1055/s-0033-1348025

    Article  Google Scholar 

  7. Ammirati M, Bernardo A (1998) Analytical evaluation of complex anterior approaches to the cranial base: an anatomic study. Neurosurgery 43(6):1398–1407, discussion 1407–1398

    CAS  PubMed  Google Scholar 

  8. Andaluz N, Beretta F, Bernucci C, Keller JT, Zuccarello M (2006) Evidence for the improved exposure of the ophthalmic segment of the internal carotid artery after anterior clinoidectomy: morphometric analysis. Acta Neurochir (Wien) 148(9):971–975. doi:10.1007/s00701-006-0862-x, discussion 975–976

    Article  CAS  Google Scholar 

  9. Andaluz N, Van Loveren HR, Keller JT, Zuccarello M (2003) Anatomic and clinical study of the orbitopterional approach to anterior communicating artery aneurysms. Neurosurgery 52(5):1140–1148, discussion 1148–1149

    Article  PubMed  Google Scholar 

  10. Baird CJ, Conway JE, Sciubba DM, Prevedello DM, Quinones-Hinojosa A, Kassam AB (2009) Radiographic and anatomic basis of endoscopic anterior craniocervical decompression: a comparison of endonasal, transoral, and transcervical approaches. Neurosurgery 65(6 Suppl):158–163. doi:10.1227/01.NEU.0000345641.97181.ED, discussion 163–154

    PubMed  Google Scholar 

  11. Balasingam V, Anderson GJ, Gross ND, Cheng CM, Noguchi A, Dogan A, McMenomey SO, Delashaw JB Jr, Andersen PE (2006) Anatomical analysis of transoral surgical approaches to the clivus. J Neurosurg 105(2):301–308. doi:10.3171/jns.2006.105.2.301

    Article  PubMed  Google Scholar 

  12. Barkun JS, Aronson JK, Feldman LS, Maddern GJ, Strasberg SM, Altman DG, Barkun JS, Blazeby JM, Boutron IC, Campbell WB, Clavien PA, Cook JA, Ergina PL, Flum DR, Glasziou P, Marshall JC, McCulloch P, Nicholl J, Reeves BC, Seiler CM, Meakins JL, Ashby D, Black N, Bunker J, Burton M, Campbell M, Chalkidou K, Chalmers I, de Leval M, Deeks J, Grant A, Gray M, Greenhalgh R, Jenicek M, Kehoe S, Lilford R, Littlejohns P, Loke Y, Madhock R, McPherson K, Rothwell P, Summerskill B, Taggart D, Tekkis P, Thompson M, Treasure T, Trohler U, Vandenbroucke J (2009) Evaluation and stages of surgical innovations. Lancet 374(9695):1089–1096. doi:10.1016/S0140-6736(09)61083-7

    Article  PubMed  Google Scholar 

  13. Batay F, Vural E, Karasu A, Al-Mefty O (2002) Comparison of the exposure obtained by endoscope and microscope in the extended trans-sphenoidal approach. Skull base 12(3):119–124

    Article  PubMed  PubMed Central  Google Scholar 

  14. Benet A, Prevedello DM, Carrau RL, Rincon-Torroella J, Fernandez-Miranda JC, Prats-Galino A, Kassam AB (2014) Comparative analysis of the transcranial “far lateral” and endoscopic endonasal “far medial” approaches: surgical anatomy and clinical illustration. World Neurosurg 81(2):385–396. doi:10.1016/j.wneu.2013.01.091

    Article  PubMed  Google Scholar 

  15. Beretta F, Andaluz N, Chalaala C, Bernucci C, Salud L, Zuccarello M (2010) Image-guided anatomical and morphometric study of supraorbital and transorbital minicraniotomies to the sellar and perisellar regions: comparison with standard techniques. J Neurosurg 113(5):975–981. doi:10.3171/2009.10.JNS09435

    Article  PubMed  Google Scholar 

  16. Beretta F, Hemida SA, Andaluz N, Zuccarello M, Keller JT (2006) Exposure of the cervical internal carotid artery: surgical steps to the cranial base and morphometric study. Neurosurgery 59(1 Suppl 1):ONS25–ONS34. doi:10.1227/01.NEU.0000219877.43072.4900006123-200607001-00005, discussion ONS25-34

    PubMed  Google Scholar 

  17. Bernstein M, Khu KJ (2009) Is there too much variability in technical neurosurgery decision-making? Virtual Tumour Board of a challenging case. Acta Neurochir (Wien) 151(4):411–412. doi:10.1007/s00701-009-0216-6, discussion 412–413

    Article  Google Scholar 

  18. Boari N, Roberti F, Biglioli F, Caputy AJ, Mortini P (2010) Quantification of clival and paraclival exposure in the Le Fort I transmaxillary transpterygoid approach: a microanatomical study. J Neurosurg 113(5):1011–1018. doi:10.3171/2010.4.JNS091887

    Article  PubMed  Google Scholar 

  19. Catapano D, Sloffer CA, Frank G, Pasquini E, D’Angelo VA, Lanzino G (2006) Comparison between the microscope and endoscope in the direct endonasal extended transsphenoidal approach: anatomical study. J Neurosurg 104(3):419–425. doi:10.3171/jns.2006.104.3.419

    Article  PubMed  Google Scholar 

  20. Cavalcanti DD, Garcia-Gonzalez U, Agrawal A, Crawford NR, Tavares PL, Spetzler RF, Preul MC (2010) Quantitative anatomic study of the transciliary supraorbital approach: benefits of additional orbital osteotomy? Neurosurgery 66(6 Suppl Operative):205–210. doi:10.1227/01.NEU.0000369948.37233.70

    PubMed  Google Scholar 

  21. Chan S, Conti F, Salisbury K, Blevins NH (2013) Virtual reality simulation in neurosurgery: technologies and evolution. Neurosurgery 72(Suppl 1):154–164. doi:10.1227/NEU.0b013e3182750d26

    Article  PubMed  Google Scholar 

  22. Chanda A, Nanda A (2002) Anatomical study of the orbitozygomatic transsellar-transcavernous-transclinoidal approach to the basilar artery bifurcation. J Neurosurg 97(1):151–160. doi:10.3171/jns.2002.97.1.0151

    Article  PubMed  Google Scholar 

  23. Chanda A, Nanda A (2002) Partial labyrinthectomy petrous apicectomy approach to the petroclival region: an anatomic and technical study. Neurosurgery 51(1):147–159, discussion 159–160

    Article  PubMed  Google Scholar 

  24. Chang SW, Wu A, Gore P, Beres E, Porter RW, Preul MC, Spetzler RF, Bambakidis NC (2009) Quantitative comparison of Kawase’s approach versus the retrosigmoid approach: implications for tumors involving both middle and posterior fossae. Neurosurgery 64(3 Suppl):44–51. doi:10.1227/01.NEU.0000334410.24984.DD00006123-200903001-00006, discussion 51–42

    Article  Google Scholar 

  25. Cheng CM, Noguchi A, Dogan A, Anderson GJ, Hsu FP, McMenomey SO, Delashaw JB Jr (2013) Quantitative verification of the keyhole concept: a comparison of area of exposure in the parasellar region via supraorbital keyhole, frontotemporal pterional, and supraorbital approaches. J Neurosurg 118(2):264–269. doi:10.3171/2012.9.JNS09186

    Article  PubMed  Google Scholar 

  26. Couldwell WT (2009) Comment to: Bernstein M, Khu KJ: Is there too much variability in technical neurosurgery decision-making? Virtual Tumour Board of a challenging case. Acta Neurochir (Wien) 151:412–413

    Google Scholar 

  27. D’Ambrosio AL, Mocco J, Hankinson TC, Bruce JN, van Loveren HR (2008) Quantification of the frontotemporal orbitozygomatic approach using a three-dimensional visualization and modeling application. Neurosurgery 62(3 Suppl 1):251–260. doi:10.1227/01.neu.0000317401.38960.f600006123-200803001-00035, discussion 260–251

    PubMed  Google Scholar 

  28. Das K, Spencer W, Nwagwu CI, Schaeffer S, Wenk E, Weiss MH, Couldwell WT (2001) Approaches to the sellar and parasellar region: anatomic comparison of endonasal-transsphenoidal, sublabial-transsphenoidal, and transethmoidal approaches. Neurol Res 23(1):51–54

    Article  CAS  PubMed  Google Scholar 

  29. Deshmukh VR, Figueiredo EG, Deshmukh P, Crawford NR, Preul MC, Spetzler RF (2006) Quantification and comparison of telovelar and transvermian approaches to the fourth ventricle. Neurosurgery 58(4 Suppl 2):ONS-202–ONS-206. doi:10.1227/01.NEU.0000207373.26614.BF, discussion ONS-206-207

    Article  Google Scholar 

  30. Devaiah AK, Reiersen D, Hoagland T (2013) Evaluating endoscopic and endoscopic-assisted access to the infratemporal fossa: a novel method for assessment and comparison of approaches. Laryngoscope 123(7):1575–1582. doi:10.1002/lary.23977

    Article  PubMed  Google Scholar 

  31. Devlin MA, Hoffmann KD, Johnson WD (2003) Comparison of mandibular surgical techniques for accessing cranial base vascular lesions. Skull base 13(2):65–72. doi:10.1055/s-2003-820560

    Article  PubMed  PubMed Central  Google Scholar 

  32. Doglietto F, Lauretti L, Frank G, Pasquini E, Fernandez E, Tschabitscher M, Maira G (2009) Microscopic and endoscopic extracranial approaches to the cavernous sinus: anatomic study. Neurosurgery 64(5 Suppl 2):413–421. doi:10.1227/01.NEU.0000338943.08985.73, discussion 421–412

    PubMed  Google Scholar 

  33. Dowd GC, Zeiller S, Awasthi D (1999) Far lateral transcondylar approach: dimensional anatomy. Neurosurgery 45(1):95–99, discussion 99–100

    Article  CAS  PubMed  Google Scholar 

  34. Dzierzanowski J, Sloniewski P, Rut M (2008) Morphometry of the pterional and pterional-orbitozygomatic approaches to the basilar artery bifurcation by the use of neuronavigation systems: a new technical concept. Folia Morphol (Warsz) 67(4):267–272

    CAS  Google Scholar 

  35. Ergina PL, Cook JA, Blazeby JM, Boutron I, Clavien PA, Reeves BC, Seiler CM, Altman DG, Aronson JK, Barkun JS, Campbell WB, Cook JA, Feldman LS, Flum DR, Glasziou P, Maddern GJ, Marshall JC, McCulloch P, Nicholl J, Strasberg SM, Meakins JL, Ashby D, Black N, Bunker J, Burton M, Campbell M, Chalkidou K, Chalmers I, de Leval M, Deeks J, Grant A, Gray M, Greenhalgh R, Jenicek M, Kehoe S, Lilford R, Littlejohns P, Loke Y, Madhock R, McPherson K, Rothwell P, Summerskill B, Taggart D, Tekkis P, Thompson M, Treasure T, Trohler U, Vandenbroucke J (2009) Challenges in evaluating surgical innovation. Lancet 374(9695):1097–1104. doi:10.1016/S0140-6736(09)61086-2

    Article  PubMed  PubMed Central  Google Scholar 

  36. Evans JJ, Hwang YS, Lee JH (2000) Pre- versus post-anterior clinoidectomy measurements of the optic nerve, internal carotid artery, and opticocarotid triangle: a cadaveric morphometric study. Neurosurgery 46(4):1018–1021, discussion 1021–1013

    CAS  PubMed  Google Scholar 

  37. Fatemi N, Dusick JR, Malkasian D, McArthur DL, Emerson J, Schad W, Kelly DF (2008) A short trapezoidal speculum for suprasellar and infrasellar exposure in endonasal transsphenoidal surgery. Neurosurgery 62(5 Suppl 2):ONS325–ONS329. doi:10.1227/01.neu.0000326014.99562.2500006123-200805002-00007, discussion ONS329-330

    PubMed  Google Scholar 

  38. Figueiredo EG, Deshmukh P, Nakaji P, Crusius MU, Crawford N, Spetzler RF, Preul MC (2007) The minipterional craniotomy: technical description and anatomic assessment. Neurosurgery 61(5 Suppl 2):256–264. doi:10.1227/01.neu.0000303978.11752.45, discussion 264–255

    PubMed  Google Scholar 

  39. Figueiredo EG, Deshmukh P, Nakaji P, Shu EB, Crawford N, Spetzler RF, Preul MC (2012) An anatomical analysis of the mini-modified orbitozygomatic and supra-orbital approaches. J Clinical Neurosci 19(11):1545–1550. doi:10.1016/j.jocn.2012.01.032

    Article  Google Scholar 

  40. Figueiredo EG, Deshmukh P, Zabramski JM, Preul MC, Crawford NR, Siwanuwatn R, Spetzler RF (2005) Quantitative anatomic study of three surgical approaches to the anterior communicating artery complex. Neurosurgery 56(2 Suppl):397–405, discussion 397–405

    PubMed  Google Scholar 

  41. Figueiredo EG, Deshmukh P, Zabramski JM, Preul MC, Crawford NR, Spetzler RF (2006) The pterional-transsylvian approach: an analytical study. Neurosurgery 59(4 Suppl 2):ONS263–ONS269. doi:10.1227/01.NEU.0000233691.23208.9C, discussion ONS269

    PubMed  Google Scholar 

  42. Figueiredo EG, Deshmukh V, Nakaji P, Deshmukh P, Crusius MU, Crawford N, Spetzler RF, Preul MC (2006) An anatomical evaluation of the mini-supraorbital approach and comparison with standard craniotomies. Neurosurgery 59(4 Suppl 2):ONS212–ONS220. doi:10.1227/01.NEU.0000223365.55701.F2, discussion ONS220

    PubMed  Google Scholar 

  43. Figueiredo EG, Zabramski JM, Deshmukh P, Crawford NR, Preul MC, Spetzler RF (2006) Anatomical and quantitative description of the transcavernous approach to interpeduncular and prepontine cisterns. Technical note. J Neurosurg 104(6):957–964. doi:10.3171/jns.2006.104.6.957

    Article  PubMed  Google Scholar 

  44. Figueiredo EG, Zabramski JM, Deshmukh P, Crawford NR, Spetzler RF, Preul MC (2006) Comparative analysis of anterior petrosectomy and transcavernous approaches to retrosellar and upper clival basilar artery aneurysms. Neurosurgery 58(1 Suppl):ONS13–ONS21, discussion ONS13-21

    PubMed  Google Scholar 

  45. Filipce V, Pillai P, Makiese O, Zarzour H, Pigott M, Ammirati M (2009) Quantitative and qualitative analysis of the working area obtained by endoscope and microscope in various approaches to the anterior communicating artery complex using computed tomography-based frameless stereotaxy: a cadaver study. Neurosurgery 65(6):1147–1152. doi:10.1227/01.NEU.0000359328.90826.9700006123-200912000-00024, discussion 1152–1143

    Article  PubMed  Google Scholar 

  46. Gagliardi F, Boari N, Roberti F, Gragnaniello C, Biglioli F, Caputy AJ, Mortini P (2012) Extradural subtemporal transzygomatic approach to the clival and paraclival region with endoscopic assist. J Craniofacial Surg 23(5):1468–1475. doi:10.1097/SCS.0b013e31825a6497

    Article  Google Scholar 

  47. Gonzalez LF, Crawford NR, Horgan MA, Deshmukh P, Zabramski JM, Spetzler RF (2002) Working area and angle of attack in three cranial base approaches: pterional, orbitozygomatic, and maxillary extension of the orbitozygomatic approach. Neurosurgery 50(3):550–555, discussion 555–557

    PubMed  Google Scholar 

  48. Guan MW, Wang JY, Feng DX, Fu P, Chen LH, Li MC, Zhang QH, Samii A, Samii M, Kong F, Zhang ZP, Chen L (2013) Anatomical study of endoscope-assisted far lateral keyhole approach to the ventral craniocervical region with neuronavigational guidance. Chin Med J 126(9):1707–1713

    PubMed  Google Scholar 

  49. Guthikonda B, Nourbakhsh A, Notarianni C, Vannemreddy P, Nanda A (2010) Middle turbinectomy for exposure in endoscopic endonasal transsphenoidal surgery: when is it necessary? Laryngoscope 120(12):2360–2366. doi:10.1002/lary.21153

    Article  PubMed  Google Scholar 

  50. Honeybul S, Neil-Dwyer G, Lang DA, Evans BT, Weller RO, Gill J (1999) The extended transbasal approach: a quantitative anatomical and histological study. Acta Neurochir 141(3):251–259

    Article  CAS  PubMed  Google Scholar 

  51. Honeybul S, Neil-Dwyer G, Lees PD, Evans BT, Lang DA (1996) The orbitozygomatic infratemporal fossa approach: a quantitative anatomical study. Acta Neurochir 138(3):255–264

    Article  CAS  PubMed  Google Scholar 

  52. Horgan MA, Anderson GJ, Kellogg JX, Schwartz MS, Spektor S, McMenomey SO, Delashaw JB (2000) Classification and quantification of the petrosal approach to the petroclival region. J Neurosurg 93(1):108–112. doi:10.3171/jns.2000.93.1.0108

    Article  CAS  PubMed  Google Scholar 

  53. Hsu FP, Anderson GJ, Dogan A, Finizio J, Noguchi A, Liu KC, McMenomey SO, Delashaw JB Jr (2004) Extended middle fossa approach: quantitative analysis of petroclival exposure and surgical freedom as a function of successive temporal bone removal by using frameless stereotaxy. J Neurosurg 100(4):695–699. doi:10.3171/jns.2004.100.4.0695

    Article  PubMed  Google Scholar 

  54. Icke S, Erbayraktar S, Osun A, Kirisoglu U, Guner M (1998) Anatomo-radiological comparison of the Cloward’s technique and medial facetectomy. Turkish Neurosurg 8(1–2):13–21

    Google Scholar 

  55. Jittapiromsak P, Deshmukh P, Nakaji P, Spetzler RF, Preul MC (2009) Comparative analysis of posterior approaches to the medial temporal region: supracerebellar transtentorial versus occipital transtentorial. Neurosurgery 64(3 Suppl):35–42. doi:10.1227/01.NEU.0000334048.96772.A700006123-200903001-00005, discussion 42–33

    Google Scholar 

  56. Jittapiromsak P, Little AS, Deshmukh P, Nakaji P, Spetzler RF, Preul MC (2008) Comparative analysis of the retrosigmoid and lateral supracerebellar infratentorial approaches along the lateral surface of the pontomesencephalic junction: a different perspective. Neurosurgery 62(5 Suppl 2):ONS279–ONS287, discussion ONS287-278

    PubMed  Google Scholar 

  57. Jittapiromsak P, Sabuncuoglu H, Deshmukh P, Spetzler RF, Preul MC (2010) Accessing the recesses of the fourth ventricle: comparison of tonsillar retraction and resection in the telovelar approach. Neurosurgery 66(3 Suppl Operative):30–39. doi:10.1227/01.NEU.0000348558.35921.4E, discussion 39–40

    PubMed  Google Scholar 

  58. Kawashima M, Rhoton AL Jr, Matsushima T (2002) Comparison of posterior approaches to the posterior incisural space: microsurgical anatomy and proposal of a new method, the occipital bi-transtentorial/falcine approach. Neurosurgery 51(5):1208–1220, discussion 1220–1201

    Article  PubMed  Google Scholar 

  59. Kinoshita M, Nakada M, Tanaka S, Ozaki N, Hamada J, Hayashi Y (2011) Transcrusal approach to the retrochiasmatic region with special reference to temporal lobe retraction: an anatomical study. Acta Neurochir (Wien) 153(3):659–665. doi:10.1007/s00701-010-0899-8

    Article  Google Scholar 

  60. Kinoshita M, Tanaka S, Nakada M, Ozaki N, Hamada J, Hayashi Y (2012) What bone part is important to remove in accessing the suprachiasmatic region with less frontal lobe retraction in frontotemporal craniotomies. World Neurosurg 77(2):342–348. doi:10.1016/j.wneu.2011.03.040

    Article  PubMed  Google Scholar 

  61. Kuriakose MA, Sorin A, Sharan R, Fishman AJ, Babu R, Delacure MD (2008) Quantitative evaluation of transtemporal and facial translocation approaches to infratemporal fossa. Skull Base 18(1):17–27. doi:10.1055/s-2007-992765

    Article  PubMed  PubMed Central  Google Scholar 

  62. Li ZQ, Lan Q (2009) Microsurgical anatomy and quantitative assessment of suboccipital median transcerebellomedullary fissure keyhole approach. Zhonghua yi xue za zhi 89(39):2754–2758

    PubMed  Google Scholar 

  63. Lin H, Zhao G (2011) A comparative anatomic study of a modified temporal-occipital transtentorial transpetrosal-ridge approach and a transpetrosal presigmoid approach. World neurosurgery 75(3–4):495–502. doi:10.1016/j.wneu.2010.11.009

    Article  PubMed  Google Scholar 

  64. Lin JM, Hipp JA, Reitman CA (2013) C1 lateral mass screw placement via the posterior arch: a technique comparison and anatomic analysis. Spine J 13(11):1549–1555. doi:10.1016/j.spinee.2013.06.006

    Article  PubMed  Google Scholar 

  65. Little AS, Jittapiromsak P, Crawford NR, Deshmukh P, Preul MC, Spetzler RF, Bambakidis NC (2008) Quantitative analysis of exposure of staged orbitozygomatic and retrosigmoid craniotomies for lesions of the clivus with supratentorial extension. Neurosurgery 62(5 Suppl 2):ONS318–ONS323. doi:10.1227/01.neu.0000326013.99562.eb, discussion ONS323-314

    PubMed  Google Scholar 

  66. Liu JK, Fukushima T, Sameshima T, Al-Mefty O, Couldwell WT (2006) Increasing exposure of the petrous internal carotid artery for revascularization using the transzygomatic extended middle fossa approach: a cadaveric morphometric study. Neurosurgery 59(4 Suppl 2):ONS309–ONS318. doi:10.1227/01.NEU.0000232638.96933.A0, discussion ONS318-309

    PubMed  Google Scholar 

  67. Mandelli C, Porras L, Lopez-Sanchez C, Sicuri GM, Lomonaco I, Garcia-Martinez V (2008) The partial labyrinthectomy petrous apicectomy approach to petroclival meningiomas. A quantitative anatomic comparison with other approaches to the same region. Neurocirugia (Astur) 19(2):133–142

    Article  CAS  Google Scholar 

  68. McCulloch P (2009) Developing appropriate methodology for the study of surgical techniques. J R Soc Med 102(2):51–55. doi:10.1258/jrsm.2008.080308

    Article  PubMed  PubMed Central  Google Scholar 

  69. McCulloch P, Altman DG, Campbell WB, Flum DR, Glasziou P, Marshall JC, Nicholl J, Aronson JK, Barkun JS, Blazeby JM, Boutron IC, Campbell WB, Clavien PA, Cook JA, Ergina PL, Feldman LS, Flum DR, Maddern GJ, Nicholl J, Reeves BC, Seiler CM, Strasberg SM, Meakins JL, Ashby D, Black N, Bunker J, Burton M, Campbell M, Chalkidou K, Chalmers I, de Leval M, Deeks J, Ergina PL, Grant A, Gray M, Greenhalgh R, Jenicek M, Kehoe S, Lilford R, Littlejohns P, Loke Y, Madhock R, McPherson K, Meakins J, Rothwell P, Summerskill B, Taggart D, Tekkis P, Thompson M, Treasure T, Trohler U, Vandenbroucke J (2009) No surgical innovation without evaluation: the IDEAL recommendations. Lancet 374(9695):1105–1112. doi:10.1016/S0140-6736(09)61116-8

    Article  PubMed  Google Scholar 

  70. McLaughlin N, Ma Q, Emerson J, Malkasian DR, Martin NA (2013) The extended subtemporal transtentorial approach: the impact of trochlear nerve dissection and tentorial incision. J Clinical Neurosci 20(8):1139–1143. doi:10.1016/j.jocn.2012.11.006

    Article  Google Scholar 

  71. Meneses MS, Moreira AL, Bordignon KC, Pedrozo AA, Ramina R, Nikoski JG (2004) Surgical approaches to the petrous apex: distances and relations with cranial morphology. Skull Base 14(1):9–19. doi:10.1055/s-2004-821353, discussion 19–20

    Article  PubMed  PubMed Central  Google Scholar 

  72. Merkow RP, Ko CY (2011) Evidence-based medicine in surgery: the importance of both experimental and observational study designs. JAMA 306(4):436–437. doi:10.1001/jama.2011.1059

    Article  CAS  PubMed  Google Scholar 

  73. Mortini P, Roberti F, Kalavakonda C, Nadel A, Sekhar LN (2003) Endoscopic and microscopic extended subfrontal approach to the clivus: a comparative anatomical study. Skull Base 13(3):139–147. doi:10.1055/s-2004-43324

    Article  PubMed  PubMed Central  Google Scholar 

  74. Nanda A, Vincent DA, Vannemreddy PS, Baskaya MK, Chanda A (2002) Far-lateral approach to intradural lesions of the foramen magnum without resection of the occipital condyle. J Neurosurg 96(2):302–309. doi:10.3171/jns.2002.96.2.0302

    Article  PubMed  Google Scholar 

  75. Pillai P, Baig MN, Karas CS, Ammirati M (2009) Endoscopic image-guided transoral approach to the craniovertebral junction: an anatomic study comparing surgical exposure and surgical freedom obtained with the endoscope and the operating microscope. Neurosurgery 64(5 Suppl 2):437–442. doi:10.1227/01.NEU.0000334050.45750.C9, discussion 442–434

    PubMed  Google Scholar 

  76. Poetscher AW, Ribas GC, Yasuda A, Nishikuni K (2005) Para-muscular and trans-muscular approaches to the lumbar inter-vertebral foramen: an anatomical comparison. Arq Neuropsiquiatr 63(1):46–49

    Article  PubMed  Google Scholar 

  77. Post N, Russell SM, Jafar JJ (2005) Role of uncal resection in optimizing transsylvian access to the basilar apex: cadaveric investigation and preliminary clinical experience in eight patients. Neurosurgery 56(2 Suppl):274–280, discussion 274–280

    PubMed  Google Scholar 

  78. Riffaud L, Neumuth T, Morandi X, Trantakis C, Meixensberger J, Burgert O, Trelhu B, Jannin P (2010) Recording of surgical processes: a study comparing senior and junior neurosurgeons during lumbar disc herniation surgery. Neurosurgery 67(2 Suppl Operative):325–332. doi:10.1227/NEU.0b013e3181f741d7

    PubMed  Google Scholar 

  79. Russo VM, Graziano F, Quiroga M, Russo A, Albanese E, Ulm AJ (2012) Minimally invasive supracondylar transtubercular (MIST) approach to the lower clivus. World Neurosurg 77(5–6):704–712. doi:10.1016/j.wneu.2011.03.024

    Article  PubMed  Google Scholar 

  80. Russo VM, Graziano F, Russo A, Albanese E, Ulm AJ (2011) High anterior cervical approach to the clivus and foramen magnum: a microsurgical anatomy study. Neurosurgery 69(1 Suppl Operative):onS103–onS114. doi:10.1227/NEU.0b013e31821664a6, discussion onS115-106

    PubMed  Google Scholar 

  81. Sabuncuoglu H, Jittapiromsak P, Cavalcanti DD, Spetzler RF, Preul MC (2011) Accessing the basilar artery apex: is the temporopolar transcavernous route an anatomically advantageous alternative? Skull Base 21(1):23–30. doi:10.1055/s-0030-1262946

    Article  PubMed  PubMed Central  Google Scholar 

  82. Safavi-Abbasi S, de Oliveira JG, Deshmukh P, Reis CV, Brasiliense LB, Crawford NR, Feiz-Erfan I, Spetzler RF, Preul MC (2010) The craniocaudal extension of posterolateral approaches and their combination: a quantitative anatomic and clinical analysis. Neurosurgery 66(3 Suppl Operative):54–64. doi:10.1227/01.NEU.0000354366.48105.FE

    PubMed  Google Scholar 

  83. Safavi-Abbasi S, Zabramski JM, Deshmukh P, Reis CV, Bambakidis NC, Theodore N, Crawford NR, Spetzler RF, Preul MC (2007) Moving toward the petroclival region: a model for quantitative and anatomical analysis of tumor shift. J Neurosurg 107(4):797–804. doi:10.3171/JNS-07/10/0797

    Article  PubMed  Google Scholar 

  84. Salma A, Alkandari A, Sammet S, Ammirati M (2011) Lateral supraorbital approach vs pterional approach: an anatomic qualitative and quantitative evaluation. Neurosurgery 68(2 Suppl Operative):364–372. doi:10.1227/NEU.0b013e318211721f, discussion 371–362

    PubMed  Google Scholar 

  85. Schwartz MS, Anderson GJ, Horgan MA, Kellogg JX, McMenomey SO, Delashaw JB Jr (1999) Quantification of increased exposure resulting from orbital rim and orbitozygomatic osteotomy via the frontotemporal transsylvian approach. J Neurosurg 91(6):1020–1026. doi:10.3171/jns.1999.91.6.1020

    Article  CAS  PubMed  Google Scholar 

  86. Scopel TF, Fernandez-Miranda JC, Pinheiro-Neto CD, Peris-Celda M, Paluzzi A, Gardner PA, Hirsch BE, Snyderman CH (2012) Petrous apex cholesterol granulomas: endonasal versus infracochlear approach. Laryngoscope 122(4):751–761. doi:10.1002/lary.22448

    Article  PubMed  Google Scholar 

  87. Seker A, Inoue K, Osawa S, Akakin A, Kilic T, Rhoton AL Jr (2011) Comparison of endoscopic transnasal and transoral approaches to the craniovertebral junction. World Neurosurg 74(6):583–602. doi:10.1016/j.wneu.2010.06.033

    Article  Google Scholar 

  88. Sincoff EH, Delashaw JB (2006) Petroclival surgery. J Neurosurg 104(1):4–5. doi:10.3171/jns.2006.104.1.4, discussion 5–6

    Article  PubMed  Google Scholar 

  89. Siwanuwatn R, Deshmukh P, Figueiredo EG, Crawford NR, Spetzler RF, Preul MC (2006) Quantitative analysis of the working area and angle of attack for the retrosigmoid, combined petrosal, and transcochlear approaches to the petroclival region. J Neurosurg 104(1):137–142. doi:10.3171/jns.2006.104.1.137

    Article  PubMed  Google Scholar 

  90. Spektor S, Anderson GJ, McMenomey SO, Horgan MA, Kellogg JX, Delashaw JB Jr (2000) Quantitative description of the far-lateral transcondylar transtubercular approach to the foramen magnum and clivus. J Neurosurg 92(5):824–831. doi:10.3171/jns.2000.92.5.0824

    Article  CAS  PubMed  Google Scholar 

  91. Spencer WR, Das K, Nwagu C, Wenk E, Schaefer SD, Moscatello A, Couldwell WT (1999) Approaches to the sellar and parasellar region: anatomic comparison of the microscope versus endoscope. Laryngoscope 109(5):791–794

    Article  CAS  PubMed  Google Scholar 

  92. Suhardja A, Agur AM, Cusimano MD (2003) Anatomical basis of approaches to foramen magnum and lower clival meningiomas: comparison of retrosigmoid and transcondylar approaches. Neurosurg Focus 14(6):e9

    Article  PubMed  Google Scholar 

  93. Tang CT, Baidya NB, Ammirati M (2013) Endoscope-assisted neurovascular decompression of the trigeminal nerve: a cadaveric study. Neurosurg Rev 36(3):403–410. doi:10.1007/S10143-012-0447-5

    Article  PubMed  Google Scholar 

  94. Tang CT, Baidya NB, Ammirati M (2013) Endoscope-assisted supraorbital approach to the retroinfundibular area: a cadaveric study. Neurosurg Rev 36(2):249–256. doi:10.1007/S10143-012-0418-x, 256–247

    Article  PubMed  Google Scholar 

  95. Tang CT, Kurozumi K, Pillai P, Filipce V, Chiocca EA, Ammirati M (2013) Quantitative analysis of surgical exposure and maneuverability associated with the endoscope and the microscope in the retrosigmoid and various posterior petrosectomy approaches to the petroclival region using computer tomograpy-based frameless stereotaxy. A cadaveric study. Clin Neurol Neurosurg 115(7):1058–1062. doi:10.1016/j.clineuro.2012.10.023

    Article  PubMed  Google Scholar 

  96. Tanriover N, Ulm AJ, Rhoton AL Jr, Kawashima M, Yoshioka N, Lewis SB (2006) One-piece versus two-piece orbitozygomatic craniotomy: quantitative and qualitative considerations. Neurosurgery 58(4 Suppl 2):ONS-229–ONS-237. doi:10.1227/01.NEU.0000210010.46680.B400006123-200604002-00006, discussion ONS-237

    Google Scholar 

  97. Tanriover N, Ulm AJ, Rhoton AL Jr, Yasuda A (2004) Comparison of the transvermian and telovelar approaches to the fourth ventricle. J Neurosurg 101(3):484–498. doi:10.3171/jns.2004.101.3.0484

    Article  PubMed  Google Scholar 

  98. Ulm AJ, Tanriover N, Kawashima M, Campero A, Bova FJ, Rhoton A Jr (2004) Microsurgical approaches to the perimesencephalic cisterns and related segments of the posterior cerebral artery: comparison using a novel application of image guidance. Neurosurgery 54(6):1313–1327, discussion 1327–1318

    Article  PubMed  Google Scholar 

  99. Vince GH, Herbold C, Coburger J, Westermaier T, Drenckhahn D, Schuetz A, Kunze E, Solymosi L, Roosen K, Matthies C (2010) An anatomical assessment of the supracerebellar midline and paramedian approaches to the inferior colliculus for auditory midbrain implants using a neuronavigation model on cadaveric specimens. J Clin Neurosci 17(1):107–112. doi:10.1016/j.jocn.2009.06.034

    Article  PubMed  Google Scholar 

  100. Wanebo JE, Chicoine MR (2001) Quantitative analysis of the transcondylar approach to the foramen magnum. Neurosurgery 49(4):934–941, discussion 941–933

    CAS  PubMed  Google Scholar 

  101. Wang H, Zhang R, Yu W, Zhong P, Tan D (2010) The posterior subtemporal keyhole approach combined with the transchoroidal approach to the ambient cistern: microsurgical anatomy and image-guided quantitative analysis. Acta Neurochir (Wien) 152(11):1933–1942. doi:10.1007/s00701-010-0800-9

    Article  Google Scholar 

  102. Wang S, Salma A, Ammirati M (2010) Posterior interhemispheric transfalx transprecuneus approach to the atrium of the lateral ventricle: a cadaveric study. J Neurosurg 113(5):949–954. doi:10.3171/2010.1.JNS091169

    Article  PubMed  Google Scholar 

  103. Wu A, Chang SW, Deshmukh P, Spetzler RF, Preul MC (2010) Through the choroidal fissure: a quantitative anatomic comparison of 2 incisions and trajectories (transsylvian transchoroidal and lateral transtemporal). Neurosurgery 66(6 Suppl Operative):221–228. doi:10.1227/01.NEU.0000369920.68166.6C00006123-201006001-00006, discussion 228–229

    PubMed  Google Scholar 

  104. Wu A, Zabramski JM, Jittapiromsak P, Wallace RC, Spetzler RF, Preul MC (2010) Quantitative analysis of variants of the far-lateral approach: condylar fossa and transcondylar exposures. Neurosurgery 66(6 Suppl Operative):191–198. doi:10.1227/01.NEU.0000369704.49958.5B, discussion 198

    PubMed  Google Scholar 

  105. Wu CY, Lan Q (2008) Quantification of the presigmoid transpetrosal keyhole approach to petroclival region. Chin Med J (Engl) 121(8):740–744

    Google Scholar 

  106. Yeremeyeva E, Salma A, Chow A, Ammirati M (2012) Microscopic and endoscopic anterior communicating artery complex anatomy as seen through keyhole approaches. J Clin Neurosci 19(10):1422–1425. doi:10.1016/j.jocn.2012.02.016

    Article  PubMed  Google Scholar 

  107. Youssef AS, Abdel Aziz KM, Kim EY, Keller JT, Zuccarello M, van Loveren HR (2004) The carotid-oculomotor window in exposure of upper basilar artery aneurysms: a cadaveric morphometric study. Neurosurgery 54(5):1181–1187, discussion 1187–1189

    Article  PubMed  Google Scholar 

  108. Zador Z, Lu DC, Arnold CM, Lawton MT (2010) Deep bypasses to the distal posterior circulation: anatomical and clinical comparison of pretemporal and subtemporal approaches. Neurosurgery 66(1):92–100. doi:10.1227/01.NEU.0000362034.81037.FC, discussion 100–101

    Article  PubMed  Google Scholar 

  109. Zhang H, Lan Q, Wang X (2011) Neuronavigation-based quantitative study of the far-lateral keyhole approach following partial removal of the occipital condyle and jugular tubercle. J Clin Neurosci 18(5):678–682. doi:10.1016/j.jocn.2010.08.031

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

FD was in part sponsored by a grant from the Fondazione “Giuseppe Alazio,” via Torquato Tasso, 22, 90144 Palermo, Italy (www.fondazionealazio.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Doglietto.

Additional information

Comments

Pasquale De Bonis, Ferrara, Italy

In this paper, Doglietto et al. documented a wide variability in addressing the anatomical features of neurosurgical approaches. The authors conclude that a uniform nomenclature and avoidance of ambiguous terms will improve future anatomo-surgical studies.

The problem of a rigorous and uniform nomenclature is timely in all aspects of neurosurgery, both for preclinical-anatomical studies and for clinical studies. This should also be applied to spinal surgery, where dozens of terms indicating the same approach (with or without little variants) only determine confusion. A classical example is the “far-lateral approach” for the lumbar spine. This approach has been called intermuscular, muscle-splitting, paravertebral, inter-transverse, extraforaminal, and with some eponyms.

I agree with the authors that a reproducible volume quantification and 3D visualization of the surgical approach both for cranial and for spinal surgery are strongly needed. At present, several frameless stereotactic devices exist and several tools have been created, with the help of biomedical engineers, whose role is more and more important. These tools could be useful both for surgical planning and preclinical anatomical studies. Moreover, these could also be very precious for creating a 3D map of the operating field and of anatomical structures for the surgeons in training.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Review of comparative, quantitative anatomical studies on neurosurgical approaches. (DOCX 158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doglietto, F., Radovanovic, I., Ravichandiran, M. et al. Quantification and comparison of neurosurgical approaches in the preclinical setting: literature review. Neurosurg Rev 39, 357–368 (2016). https://doi.org/10.1007/s10143-015-0694-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-015-0694-3

Keywords

Navigation