Skip to main content
Log in

Can anatomical feasibility studies drive neurosurgical procedures and reach patients faster than traditional translational research?

  • Original Article
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Often, surgical techniques are practiced and studied in the anatomy laboratory. Occasionally, new surgical methods are developed with cadaveric anatomical studies. Some cadaveric feasibility studies, if published, might go on to be used by surgeons from around the world for improved patient care. Herein, we review our experience with 37 published anatomical feasibility studies over an 18-year period (2002–2020) and analyze the literature for published examples of surgical application of these same anatomical studies. We found that, for cadaveric anatomical feasibility studies within 7 years of their publication date, approximately 22% will be used in neurosurgery with the clinical applications published. Of these studies awarded clinical citation within 7 years of publication, the median time to that citation was approximately 3.4 years. As the average time for translational research to reach patient care is 17 years, cadaveric anatomical studies in this series reached patient care much sooner than traditional translational research. Cadaveric anatomical studies, based on our experience, can drive neurosurgical procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Morris ZS, Wooding S, Grant J (2011) The answer is 17 years, what is the question: understanding time lags in translational research. J R Soc Med 104:510–520

    Article  PubMed  PubMed Central  Google Scholar 

  2. Green LW, Ottoson JM, García C, Hiatt RA, Roditis ML (2014) Diffusion theory and knowledge dissemination, utilization and integration. Front Public Health Serv Syst Res 3:3

    PubMed  PubMed Central  Google Scholar 

  3. Westfall JM, Mold J, Fagnan L (2007) Practice-based research–“Blue Highways” on the NIH roadmap. JAMA 297(4):403–406

    Article  CAS  PubMed  Google Scholar 

  4. Loukas M, Louis RG Jr, Tubbs RS, Wartmann C, Colborn GL (2008) Intra-abdominal laparoscopic pudendal canal decompression - a feasibility study. Surg Endosc 22:1525–1532

    Article  PubMed  Google Scholar 

  5. Tubbs RS, Mortazavi MM, Shoja MM, Loukas M, Cohen-Gadol AA (2011) Contralateral spinal accessory nerve for ipsilateral neurotization of branches of the brachial plexus: a cadaveric feasibility study. J Neurosurg 114:1538–1540

    Article  PubMed  Google Scholar 

  6. Tubbs RS, Bauer D, Chambers MR, Loukas M, Shoja MM, Cohen-Gadol AA (2011) A novel method for cerebrospinal fluid diversion: a cadaveric and animal study. Neurosurgery 68:491–495

    Article  PubMed  Google Scholar 

  7. Tubbs RS, Loukas M, Shoja MM, Salter EG, Oakes WJ, Blount JP (2006) Approach to the cervical portion of the vagus nerve via the posterior cervical triangle: a cadaveric feasibility study with potential use in vagus nerve stimulation procedures. J Neurosurg Spine 5:540–542

    Article  PubMed  Google Scholar 

  8. Tubbs RS, Loukas M, Shoja MM, Salter F, Salter EG, Oakes WJ (2008) Use of autologous scapula for cranioplasty: cadaveric feasibility study. Childs Nerv Syst 24:955–959

    Article  PubMed  Google Scholar 

  9. Tubbs RS, Pearson B, Loukas M, Shokouhi G, Shoja MM, Oakes WJ (2008) Phrenic nerve neurotization utilizing the spinal accessory nerve: technical note with potential application inpatients with high cervical quadriplegia. Childs Nerv Syst 24:1341–1344

    Article  PubMed  Google Scholar 

  10. Monteith S, Goren O, Sampath R et al (2018) Internal thoracic artery to middle cerebral artery bypass surgery: cadaveric feasibsility study. World Neurosurg 112:e298–e301

    Article  PubMed  Google Scholar 

  11. Louis RG Jr, Whitesides JD, Kollias TF, Iwanaga J, Tubbs RS, Loukas M (2017) Intercostal nerve to long thoracic nerve transfer for the treatment of winged scapula: a cadaveric feasibility study. Cureus 9:e1898

    PubMed  Google Scholar 

  12. Iwanaga J, Watanabe K, Kusukawa J et al (2017) A novel treatment for keratitis sicca (Dry eye): anatomical feasibility study. Clin Anat 30:839–843

    Article  PubMed  Google Scholar 

  13. Ishak B, Schneider T, Tubbs RS et al (2017) Modified posterior C1 lateral mass screw insertion for type II odontoid process fractures using intraoperative computed tomography-based spinal navigation to minimize postoperative occipital neuralgia. World Neurosurg 107:194–201

    Article  PubMed  Google Scholar 

  14. Fisahn C, Johal J, Moisi M et al (2017) Detethering of the C2 nerve root and avoidance of transection and injury during C1 screw placement: a cadaveric feasibility study. World Neurosurg 97:221–224

    Article  PubMed  Google Scholar 

  15. Tubbs RS, Tubbs I, Loukas M, Cohen-Gadol AA (2015) Ventriculoiliac shunt: a cadaveric feasibility study. J Neurosurg Pediatr 15:310–312

    Article  PubMed  Google Scholar 

  16. Tubbs RS, Goodrich D, Tubbs I, Loukas M, Cohen-Gadol AA (2014) A novel method for passing cerebrospinal fluid shunt tubing: a proof of principle study. Childs Nerv Syst 30:2115–2117

    Article  PubMed  Google Scholar 

  17. Tubbs RS, Watanabe K, Loukas M, Cohen-Gadol AA (2013) Use of the anterior interosseous artery for external to internal carotid artery bypass procedures: a cadaveric feasibility study. Br J Neurosurg 27:791–794

    Article  PubMed  Google Scholar 

  18. Louis RG Jr, Tubbs RS, Mortazavi MM, Shoja MM, Loukas M, Cohen-Gadol AA (2013) Harvest of autologous clavipectoral fascia for use in duraplasty: cadaveric feasibility study. J Craniofac Surg 24:619–621

    Article  PubMed  Google Scholar 

  19. Uz A, Apaydin N, Cinar SO et al (2010) A novel approach for anterior sciatic nerve block: cadaveric feasibility study. Surg Radiol Anat 32:873–878

    Article  PubMed  Google Scholar 

  20. Tubbs RS, Loukas M, Callahan JD, Cohen-Gadol AA (2010) A novel approach to the upper anterior thoracic spine: a cadaveric feasibility study. J Neurosurg Spine 13:346–350

    Article  PubMed  Google Scholar 

  21. Tubbs RS, Loukas M, Shoja MM et al (2009) The contralateral long thoracic nerve as a donor for upper brachial plexus neurotization procedures: cadaveric feasibility study. J Neurosurg 110:749–753

    Article  PubMed  Google Scholar 

  22. Melamed I, Tubbs RS, Payner TD, Cohen-Gadol AA (2009) Trans-zygomatic middle cranial fossa approach to access lesions around the cavernous sinus and anterior parahippocampus: a minimally invasive skull base approach. Acta Neurochir (Wien) 151:977–982

    Article  Google Scholar 

  23. Tubbs RS, Shaffer WA, Loukas M, Shoja MM, Oakes WJ (2008) The long thoracic nerve as a donor for facial nerve reanimation procedures: cadaveric feasibility study: laboratory investigation. J Neurosurg 108:1225–1229

    Article  PubMed  Google Scholar 

  24. Tubbs RS, Louis RG Jr, Wartmann CT et al (2008) Suprascapular nerve as a donor for extracranial facial nerve reanimation procedures: a cadaveric feasibility study. J Neurosurg 108:145–148

    Article  PubMed  Google Scholar 

  25. Tubbs RS, Louis RG Jr, Wartmann CT et al (2008) Use of the clavicle in anterior cervical discectomy/corpectomy fusion procedures: cadaveric feasibility study. Childs Nerv Syst 24:337–341

    Article  PubMed  Google Scholar 

  26. Tubbs RS, Wartmann CT, Louis RG Jr, Shoja MM, Cormier J, Loukas M (2007) Use of the scapular spine in lumbar fusion procedures: cadaveric feasibility study. Laboratory investigation. J Neurosurg Spine 7:554–557

    Article  PubMed  Google Scholar 

  27. Tubbs RS, Loukas M, Shoja MM et al (2007) Endoscopically assisted decompression of the suprascapular nerve in the supraspinous fossa: a cadaveric feasibility study. Laboratory investigation. J Neurosurg 107:1164–1167

    Article  PubMed  Google Scholar 

  28. Tubbs RS, Loukas M, Shoja MM et al (2007) The nerve to the mylohyoid as a donor for facial nerve reanimation procedures: a cadaveric feasibility study. J Neurosurg 106:677–679

    Article  PubMed  Google Scholar 

  29. Tubbs RS, Shoja MM, Acakpo-Satchivi L et al (2006) Exposure of the V1–V3 segments of the vertebral artery via the posterior cervical triangle: a cadaveric feasibility study. J Neurosurg Spine 5:320–323

    Article  PubMed  Google Scholar 

  30. Tubbs RS, Salter EG, Sheetz J et al (2005) Novel surgical approach to the carpal tunnel: cadaveric feasibility study. Clin Anat 18:350–356

    Article  PubMed  Google Scholar 

  31. Tubbs RS, Wellons JC 3rd, Salter G, Oakes WJ (2004) Fenestration of the superior medullary velum as treatment for a trapped fourth ventricle: a feasibility study. Clin Anat 17:82–87

    Article  PubMed  Google Scholar 

  32. Tubbs RS, Smyth MD, Salter G, Doughty K, Blount JP (2004) Eyebrow incision with supraorbital trephination for endoscopic corpus callosotomy: a feasibility study. Childs Nerv Syst 20:188–191

    Article  PubMed  Google Scholar 

  33. Tubbs RS, Patwardhan RV, Oakes WJ (2002) Ninth cranial nerve stimulation for epilepsy control. Part 2: surgical feasibility in humans. Pediatr Neurosurg 36:244–7

    Article  PubMed  Google Scholar 

  34. Kikuta S, Yalcin B, Iwanaga J, Watanabe K, Kusukawa J, Tubbs RS (2020) The supraorbital and supratrochlear nerves for ipsilateral corneal neurotization: anatomical study. Anat Cell Biol 53:2–7

    Article  PubMed  Google Scholar 

  35. Iwanaga J, Tubbs RS (2020) A new treatment for lingual nerve injury: an anatomical feasibility study for using a buccal nerve pedicle graft. Surg Radiol Anat 42:49–53

    Article  PubMed  Google Scholar 

  36. Schmitt PJ, Altafulla JJ, Kikuta S et al (2019) Internal thoracic artery to vertebral artery bypass surgery: a cadaveric feasibility study. World Neurosurg 130:e722–e725

    Article  PubMed  Google Scholar 

  37. Iwanaga J, Altafulla JJ, Kikuta S, Tubbs RS (2019) An anatomical feasibility study using a great auricular nerve graft for ipsilateral inferior alveolar nerve repair. J Craniofac Surg 30:2625–2627

    Article  PubMed  Google Scholar 

  38. Kikuta S, Iwanaga J, Watanabe K, Kusukawa J, Tubbs RS (2019) Anatomical feasibility study of the digastric branch of the facial nerve: a potential donor for facial nerve reanimation. J Oral Maxillofac Surg 77:1733.e1-1733.e6

    Article  Google Scholar 

  39. Vetter M, Iwanaga J, Choi PJ, Yilmaz E, Oskouian RJ, Tubbs RS (2019) A novel microsurgical procedure for revascularization of the vertebral artery. World Neurosurg 122:e302–e306

    Article  PubMed  Google Scholar 

  40. Possover M (2009) Laparoscopic management of endopelvic etiologies of pudendal pain in 134 consecutive patients. J Urol 181:1732–1736

    Article  PubMed  Google Scholar 

  41. O’Neill BR, Wilberger JE (2010) Revision of vagal nerve stimulator electrodes through a posterior cervical triangle approach: technical note. Neurosurgery 67(2 Suppl Operative):457–60

    PubMed  Google Scholar 

  42. Yang ML, Li JJ, Zhang SC et al (2011) Functional restoration of the paralyzed diaphragm in high cervical quadriplegia via phrenic nerve neurotization utilizing the functional spinal accessory nerve. J Neurosurg Spine 15:190–194

    Article  PubMed  Google Scholar 

  43. Felici N, Cannatà C, Cigna E, Sorvillo V, Del Bene M (2012) Contralateral spinal accessory nerve: a suitable “new” donor nerve for heterotopic nerve transfer in total brachial plexus palsy. Handchir Mikrochir Plast Chir 44:80–83

    Article  CAS  PubMed  Google Scholar 

  44. Iwasaki K, Ikedo T, Hashikata H, Toda H (2014) Autologous clavicle bone graft for anterior cervical discectomy and fusion with titanium interbody cage. J Neurosurg Spine 21:761–768

    Article  PubMed  Google Scholar 

  45. Ming Woo PY, Hung Pang PK, Chan KY, Ching Kwok JK (2015) Ventriculosternal shunting for the management of hydrocephalus: case report of a novel technique. Neurosurgery 11 Suppl 3(Supplement3):371–5

    PubMed  Google Scholar 

  46. Erdogru T, Avci E, Akand M (2014) Laparoscopic pudendal nerve decompression and transposition combined with omental flap protection of the nerve (Istanbul technique): technical description and feasibility analysis. Surg Endosc 28:925–932

    Article  PubMed  Google Scholar 

  47. Bhandari PS, Deb P (2016) Use of contralateral spinal accessory nerve for ipsilateral suprascapular neurotization in global brachial plexus injury: a new technique. J Neurosurg Spine 24:186–188

    Article  PubMed  Google Scholar 

  48. Heredia Gutiérrez A, CachónCámara GE, González Carranza V, Torres García S, Chico Ponce de León F (2020) Phrenic nerve neurotization utilizing half of the spinal accessory nerve to the functional restoration of the paralyzed diaphragm in high spinal cord injury secondary to brain tumor resection. Childs Nerv Syst 36:1307–10

    Article  PubMed  Google Scholar 

  49. Lee JC, Kleiber GM, Pelletier AT, Reid RR, Gottlieb LJ (2013) Autologous immediate cranioplasty with vascularized bone in high-risk composite cranial defects. Plast Reconstr Surg 132:967–975

    Article  CAS  PubMed  Google Scholar 

  50. Goldstein HE, Feldstein NA, Anderson RC (2015) Ventriculoiliac shunt: a single case experience. J Neurosurg Pediatr 16:477–478

    Article  PubMed  Google Scholar 

  51. Iwanaga J, Singh V, Ohtsuka A, Hwang Y, Kim HJ, Moryś J, Ravi KS, Ribatti D, Trainor PA, Sañudo JR, Apaydin N, Şengül G, Albertine KH, Walocha JA, Loukas M, Duparc F, Paulsen F, Del Sol M, Adds P, Hegazy A, Tubbs RS (2021) Acknowledging the use of human cadaveric tissues in research papers: recommendations from anatomical journal editors. Clin Anat 34:2–4

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank those who donated their bodies to science so that anatomical research could be performed. Results from such research can potentially increase mankind’s overall knowledge that can then improve patient care. Therefore, these donors and their families deserve our highest gratitude [51].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joe Iwanaga.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwanaga, J., Boggio, N.A., Bui, C.J. et al. Can anatomical feasibility studies drive neurosurgical procedures and reach patients faster than traditional translational research?. Neurosurg Rev 45, 891–896 (2022). https://doi.org/10.1007/s10143-021-01626-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-021-01626-x

Keywords

Navigation