Skip to main content

Advertisement

Log in

New insights in the limbic modulation of visual inputs: The role of the inferior longitudinal fasciculus and the Li-Am bundle

  • Original Article
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Recent anatomical and DTI data demonstrated new aspects in the subcortical occipito-temporal connections. Although a direct (inferior longitudinal fasciculus, ILF) pathway has been previously described, its fine description is still matter of debate. Moreover, a fast and direct subcortical connection between the limbic system and the occipital lobe has been previously recognized in many functional studies but it still remains poorly documented by anatomical images. We provided for the first time an extensive and detailed anatomical description of the ILF subcortical segmentation. We dissected four human hemispheres with modified Klingler’s technique, from the basal to the lateral occipito-temporal surface in the two steps, tracking the ILF fibers until their cortical termination. Pictures of this direct temporo-occipital pathway are discussed in the light of recent literature regarding anatomy and functions of occipito-temporal areas. The dissection confirmed the classical originating branches of ILF and allowed a fine description of two main subcomponent of this bundle, both characterized by separate hierarchical distribution: a dorsal ILF and a ventral ILF. Moreover, a direct pathway between lingual cortex and amygdala, not previously demonstrated, is here described with anatomical images. Even if preliminary in results, this is the first fine description of ILF’s subcomponents. The complex but clearly segregated organization of the fibers of this bundle (dILF and vILF) supports different level of functions mediated by visual recognition. Moreover, the newly described direct pathway from lingual to amygdala (Li-Am), seems involved in the limbic modulation of visual processing, so it may support physiological conditions the crucial role of this connection in human social cognition. In pathological conditions, on the other hand, this may be one of the hyperactivated pathways in temporo-occipital epileptic and nonepileptic syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Amaral DG (2002) The primate amygdala and the neurobiology of social behavior: implications for understanding social anxiety. Biol Psychiatry 51:11–17

    Article  PubMed  Google Scholar 

  2. Anderson AK, Phelps EA (2001) Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature 411:305–309

    Article  CAS  PubMed  Google Scholar 

  3. Babb TL, Halgren E, Wilson C, Engel J, Crandall P (1981) Neuronal firing patterns during the spread of an occipital lobe seizure to the temporal lobes in man. Electroencephalogr Clin Neurophysiol 51:104–107

    Article  CAS  PubMed  Google Scholar 

  4. Barnea-Goraly N, Menon V, Eckert M, Tamm L, Bammer R, Karchemskiy A, Dant CC, Reiss AL (2005) White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study. Cereb Cortex 15(12):1848–1854

    Article  PubMed  Google Scholar 

  5. Bauer RM (1982) Visual hypoemotionality as a symptom of visual ± limbic disconnection in man. Arch Neurol 39:702–708

    Article  CAS  PubMed  Google Scholar 

  6. Benson DF, Segarra J, Albert ML (1974) Visual agnosia-prosopagnosia. A clinicopathologic correlation. Arch Neurol 30:307–310

    Article  CAS  PubMed  Google Scholar 

  7. Bien CG, Benninger FO, Urbach H, Schramm J, Kurthen M, Elger CE (2000) Localizing value of epileptic visual auras. Brain 123(Pt 2):244–253

    Article  PubMed  Google Scholar 

  8. Binder JR, Frost JA, Hammeke TA, Rao SM, Cox RW (1996) Function of the left planun temporale in auditory and linguistic processing. Brain 119:1239–1247

    Article  PubMed  Google Scholar 

  9. Booth JR, Burman DD, Meyer JR, Gitelman DR, Parrish TB, Mesulam MM (2002) Functional anatomy of intra- and cross-modal lexical tasks. NeuroImage 16:7–22

    Article  PubMed  Google Scholar 

  10. Borowsky R, Owen WJ, Wile TL, Friesen CK, Martin JL, Sarty GE (2005) Neuroimaging of language processes: fMRI of silent and overt lexical processing and the promise of multiple process imaging in single brain studies. Can Assoc Radiol J 56:204–213

    PubMed  Google Scholar 

  11. Bragin A, Wilson CL, Engel J Jr (2000) Chronic epileptogenesis requires development of a network of pathologically interconnected neuron clusters: a hypothesis. Epilepsia 41(Suppl 6):S144–S152

    Article  PubMed  Google Scholar 

  12. Buchel C, Price C, Friston K (1998) A multimodal language region in the ventral visual pathway. Nature 394:274–277

    Article  CAS  PubMed  Google Scholar 

  13. Buckner RL, Koutstaal W, Schacter DL, Rosen BR (2000) Functional MRI evidence for a role of frontal and inferior temporal cortex in amodal components of priming. Brain 123:620–640

    Article  PubMed  Google Scholar 

  14. Catani M, Jones DK, Donato R, Ffytche DH (2003) Occipito-temporal connections in the human brain. Brain 126:2093–2107

    Article  PubMed  Google Scholar 

  15. Catani M, Jones DK, Ffytche DH (2005) Perisylvian language networks of the human brain. Ann Neurol 57:8–16

    Article  PubMed  Google Scholar 

  16. Chao LL, Haxby JV, Martin A (1999) Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nat Neurosci 2:913–919

    Article  CAS  PubMed  Google Scholar 

  17. Chee MWL, O’Craven KM, Bergida R, Rosen BR, Savoy RL (1999) Auditory and visual word processing studied with fMRI. Hum Brain Mapp 7:15–28

    Article  CAS  PubMed  Google Scholar 

  18. Chertkow H, Bub D, Deaudon C, Whitehead V (1997) On the status of object concepts in aphasia. Brain Lang 58:203–232

    Article  CAS  PubMed  Google Scholar 

  19. Choi J, Jeong B, Polcari A, Rohan ML, Teicher MH (2012) Reduced fractional anisotropy in the visual limbic pathway of young adults witnessing domestic violence in childhood. NeuroImage 59:1071–1079

    Article  PubMed Central  PubMed  Google Scholar 

  20. Cohen L, Dehaene S (2004) Specialization within the ventral stream: the case for the visual word form area. NeuroImage 22:466–476

    Article  PubMed  Google Scholar 

  21. Cohen L, Jobert A, Le Bihan D, Dehaene S (2004) Distinct unimodal and multimodal regions for word processing in the left temporal cortex. NeuroImage 23:1256–1270

    Article  PubMed  Google Scholar 

  22. Cohen L, Lehéricy S, Chochon F, Lemer C, Rivaud S, Dehaene S (2002) Language-specific tuning of visual cortex? Functional properties of the visual word form area. Brain 125(Pt 5):1054–1069

    Article  PubMed  Google Scholar 

  23. Collins RC, Caston TV (1979) Functional anatomy of occipital lobe seizures: an experimental study in rats. Neurology 29(5):705–716

    Article  CAS  PubMed  Google Scholar 

  24. Crosby EC, Humphrey T, Lauer EW (1962) Correlative anatomy of the nervous system. Macmillan, New York

    Google Scholar 

  25. Damasio AR (1989) Time-locked multiregional retroactivation: a systems-level proposal for the neural substrates of recall and recognition. Cognition 33:25–62

    Article  CAS  PubMed  Google Scholar 

  26. Dehaene S, LeClec’ HG, Poline JB, LeBihan D, Cohen L (2002) The visual word form area: a prelexical representation of visual words in the fusiform gyrus. Neuroreport 13:321–325

    Article  PubMed  Google Scholar 

  27. Dejerine J (1895) Anatomie des centres nerveux, vol 1. Rueff et Cie, Paris

    Google Scholar 

  28. Delaney-Black V, Covington C, Ondersma SJ, Nordstrom-Klee B, Templin T, Ager J, Janisse J, Sokol RJ (2002) Violence exposure, trauma, and IQ and/or reading deficits among urban children. Arch Pediatr Adolesc Med 156:280–285

    Article  PubMed  Google Scholar 

  29. Démonet J-F, Chollet F, Ramsay S, Cardebat D, Nespoulous J-L, Wise R et al (1992) The anatomy of phonological and semantic processing in normal subjects. Brain 115:1753–1768

    Article  PubMed  Google Scholar 

  30. De Renzi E, Zambolin A, Crisi G (1987) The pattern of neuro-psychological impairment associated with left posterior cerebral artery infarcts. Brain 110(Pt. 5):1099–1116

    Article  PubMed  Google Scholar 

  31. D’Esposito. M. Detre. J.A. Aguirre. G.K. Stallcup. M. Alsop. D.C., Tippet, L.J., et al. (1997). A functional MRI study of mental image generation. Neuropsychologia

  32. Epelbaum S, Pinel P, Gaillard R, Delmaire C, Perrin M, Dupont S, Dehaene S, Cohen L (2008) Pure alexia as a disconnection syndrome: new diffusion imaging evidence for an old concept. Cortex 44:962–974

    Article  PubMed  Google Scholar 

  33. Epstein R, Harris A, Stanley D, Kanwisher N (1999) The parahippocampal place area: recognition, navigation, or encoding? Neuron 23:115–125

    Article  CAS  PubMed  Google Scholar 

  34. Fernández-Miranda J.C. Rhoton AL. Álvarez-Linera J. Kakizawa Y. Choi C. De Oliveira E. (2008) Three Dimensional Microsurgical and Tractographic anatomy of the white matter of the Human Brain. Neurosurgery 62[SHC Suppl 3]:SHC-989–SHC-1027.

  35. Foundas AL, Daniels SK, Vasterling JJ (1998) Anomia: case studies with lesion localization. Neurocase 4:35–43

    Article  Google Scholar 

  36. Geschwind N (1965) Disconnexion syndromes in animals and man. Part I. Brain 88:237–294

    Article  CAS  PubMed  Google Scholar 

  37. Geschwind N (1965) Disconnexion syndromes in animals and man. Part II. Brain 88:585–644

    Article  CAS  PubMed  Google Scholar 

  38. Giraud AL, Price CJ (2001) The constraints functional neuroanatomy places on classical models of auditory word processing. J Cogn Neurosci 13:754–765

    Article  CAS  PubMed  Google Scholar 

  39. Girkin CA, Miller NR (2001) Central disorders of vision in humans. Surv Ophthalmol 45:379 –405

    Article  PubMed  Google Scholar 

  40. Gloor P (1997) The temporal lobe and the limbic system. Oxford University Press, New York

    Google Scholar 

  41. Goodale MA, Milner D (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    Article  CAS  PubMed  Google Scholar 

  42. Gowers W.R. (1879). Cases of cerebral tumour illustrating diagnosis and localisation. Lancet i, 363–365

  43. Grill-Spector K (2003) The neural basis of object perception. Curr Opin Neurobiol 13:159–166

    Article  CAS  PubMed  Google Scholar 

  44. Hasson U, Levy I, Behrmann M, Hendler T, Malach R (2002) Eccentricity bias as an organizing principle for human high-order object areas. Neuron 34:479–490

    Article  CAS  PubMed  Google Scholar 

  45. Haxby JV, Ungerleider LG, Clark VP, Schouten JL, Hoffman EA, Martin A (1999) The effect of face inversion on activity in human neural systems for face and object perception. Neuron 22:189–199

    Article  CAS  PubMed  Google Scholar 

  46. Holl N, Noblet V, Rodrigo S, Dietemann JL, Ben Mekhbi M, Kehrli P, Wolfram-Gabel R, Braun M, Kremer S (2011) Temporal lobe association fiber tractography as compared to histology and dissection. Surg Radiol Anat 33:713–722

    Article  PubMed  Google Scholar 

  47. Hung Y, Smith ML, Bayle DJ, Mills T, Cheyne D, Taylor MJ (2010) Unattended emotional faces elicit early lateralized amygdala-frontal and fusiform activations. Neuroimage 50:727–733

    Article  PubMed  Google Scholar 

  48. Jankowiak J, Albert ML (1994) Lesion localization in visual agnosia. In: Kertesz A (ed) Localization and neuroimaging in neuropsychology. Academic, San Diego

    Google Scholar 

  49. Jobst BC, Williamson PD, Thadani VM, Gilbert KL, Holmes GL, Morse RP, Darcey TM, Duhaime AC, Bujarski KA, Roberts DW (2010) Intractable occipital lobe epilepsy: clinical characteristics and surgical treatment. Epilepsia 51:2334–2337

    Article  PubMed  Google Scholar 

  50. Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17(1 (11)):4302–4311

    CAS  PubMed  Google Scholar 

  51. Kemppainen S, Jolkkonen E, Pitkänen A (2002) Projections from the posterior cortical nucleus of the amygdala to the hippocampal formation and parahippocampal region in rat. Hippocampus 12(6):735–755

    Article  PubMed  Google Scholar 

  52. Klingler J, Gloor P (1960) The connections of the amygdala and of the anterior temporal cortex in the human brain. J Comp Neurol 115:333–369

    Article  CAS  PubMed  Google Scholar 

  53. Klingler J (1935) Erleichterung der makroskopischen praeparation des gehirns durch den gefrierprozess. Schweiz Arch Neurol Psychiatr 36:247–256

    Google Scholar 

  54. Kun Lee S, Young Lee S, Kim DW, Soo Lee D, Chung CK (2005) Occipital lobe epilepsy: clinical characteristics, surgical outcome, and role of diagnostic modalities. Epilepsia 46:688–695

    Article  PubMed  Google Scholar 

  55. Kuzniecky R (1998) Symptomatic occipital lobe epilepsy. Epilepsia 39(Suppl 4):S24–S31

    Article  PubMed  Google Scholar 

  56. Ludwig E, Klingler J (1956) Atlas cerebri humani. Little, Brown, Boston

    Google Scholar 

  57. Mandonnet E, Gatignol P, Duffau H (2009) Evidence for an occipito-temporal tract underlying visual recognition in picture naming. Clin Neurol Neurosurg 111:601–605

    Article  PubMed  Google Scholar 

  58. Martino J, Brogna C, Robles SG, Vergani F, Duffau H (2010) Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data. Cortex 46(5):691–699

    Article  PubMed  Google Scholar 

  59. Meadows JC (1974) The anatomical basis of prosopagnosia. J Neurol Neurosurg Psychiatry 37:489–501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Morel S, Beaucousin V, Perrin M, George N (2012) Very early modulation of brain responses to neutral faces by a single prior association with an emotional context: evidence from MEG. Neuroimage 61(4):1461–1470

    Article  PubMed  Google Scholar 

  61. Morris JS, Ohman A, Dolan RJ (1998) Conscious and uncounscious emotional learning in the human amygdala. Nature 393:467–470

    Article  CAS  PubMed  Google Scholar 

  62. Mummery CJ, Patterson K, Wise RJ, Vandenbergh R, Price CJ, Hodges JR (1999) Disrupted temporal lobe connections in semantic dementia. Brain 122(Pt. 1):61–73

    Article  PubMed  Google Scholar 

  63. Nieuwenhuys R. Voogd J. and van Huijzen C. (1988) The human central nervous system. Berlin.

  64. Nobre AC, Allison T, McCarthy G (1994) Word recognition in the human inferior temporal lobe. Nature 372(17 (6503)):260–263

    Article  CAS  PubMed  Google Scholar 

  65. Olivier A, Gloor P, Andermann F, Ives J (1982) Occipitotemporal epilepsy studied with stereotaxically implanted depth electrodes and successfully treated by temporal resection. Ann Neurol 11(4):428–432

    Article  CAS  PubMed  Google Scholar 

  66. Ortibus E, Verhoeven J, Sunaert S, Casteels I, De Cock P, Lagae L (2012) Integrity of the inferior longitudinal fasciculus and impaired object recognition in children: a diffusion tensor imaging study. Dev Med Child Neurol 54:38–43

    Article  PubMed  Google Scholar 

  67. Palmini A, Andermann F, Dubeau F, Gloor P, Olivier A, Quesney LF, Salanova V (1993) Occipitotemporal epilepsies: evaluation of selected patients requiring depth electrodes studies and rationale for surgical approaches. Epilepsia 34(1):84–96

    Article  CAS  PubMed  Google Scholar 

  68. Perani D, Paulesu E, Sebastian Galles N, Dupoux E, Dehaene S, Bettinardi V et al (1998) The bilingual brain: proficiency and age of acquisition of the second language. Brain 121:1841–1852

    Article  PubMed  Google Scholar 

  69. Pessoa L, Adolphs R (2002) Emotion processing and the amygdala: from a ‘low road’ to ‘many roads’ of evaluating biological significance. Nat Rev Neurosci 11:773–783

    Article  Google Scholar 

  70. Philippi CL, Mehta S, Grabowski T, Adolphs R, Rudrauf D (2009) Damage to association fiber tracts impairs recognition of the facial expression of emotion. J Neurosci 29:15089–15099

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Pihlajamaki M, Tanila H, Hanninen T, Kononen M, Laakso M, Partanen K et al (2000) Verbal fluency activates the left medial temporal lobe: a functional magnetic resonance imaging study. Ann Neurol 47:470–476

    Article  CAS  PubMed  Google Scholar 

  72. Polyak S (1957) The vertebrate visual system. University of Chicago Press, Chicago

    Google Scholar 

  73. Putnam TJ (1926) Studies on the central visual connections. Arch Neurol Psychiatr 16:566–596

    Article  Google Scholar 

  74. Rollins NK, Vachha B, Srinivasan P, Chia J, Pickering J, Hughes CW, Gimi B (2009) Simple developmental dyslexia in children: alterations in diffusion-tensor metrics of white matter tracts at 3 T. Radiology 251:882–891

    Article  PubMed  Google Scholar 

  75. Ross ED (1980) Sensory-specific and fractional disorders of recent memory in man. I. Isolated loss of visual recent memory. Arch Neurol 37:193–200

    Article  CAS  PubMed  Google Scholar 

  76. Rudrauf D, Mehta S, Grabowski TJ (2008) Disconnection’s renaissance takes shape: formal incorporation in group-level lesion studies. Cortex 44:1084–1096

    Article  PubMed  Google Scholar 

  77. Sagi D (2011) Perceptual learning in vision research. Vision Res 51:1552–1566

    Article  PubMed  Google Scholar 

  78. Salanova V, Andermann F, Olivier A, Rasmussen T, Quesney LF (1992) Occipital lobe epilepsy: electroclinical manifestations, electrocorticography, cortical stimulation and outcome in 42 patients treated between 1930 and 1991. Surgery of occipital lobe epilepsy. Brain 115(Pt 6):1655–1680

    Article  PubMed  Google Scholar 

  79. Sasaki Y, Nanez JE, Watanabe T (2010) Advances in visual perceptual learning and plasticity. Nat Rev Neurosci 11:53–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Sergent J, Ohta S, MacDonald B (1992) Functional neuroanatomy of face and object processing. Brain 115:15–36

    Article  PubMed  Google Scholar 

  81. Shinoura N, Suzuki Y, Tsukada M, Yoshida M, Yamada R, Tabei Y, Saito K, Koizumi T, Yagi K (2010) Deficits in the left inferior longitudinal fasciculus results in impairments in object naming. Neurocase 16:135–139

    Article  PubMed  Google Scholar 

  82. Sierra M, Lopera F, Lambert MV, Phillips ML, David AS (2002) Separating depersonalisation and derealisation: the relevance of the ‘lesion method’. J Neurol Neurosurg Psychiatry 72:530–532

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Standring S. Crossman AR. Turlough FitzGerald MJ. and Collins P. (2005) Gray’s Anatomy: the Anatomical Basis of Clinical Practice. New York

  84. Steinbrink C, Vogt K, Kastrup A, Muller HP, Juengling FD, Kassubek J, Riecker A (2008) The contribution of white and gray matter differences to developmental dyslexia: insights from DTI and VBM at 3.0 T. Neuropsychologia 46:3170–3178

    Article  CAS  PubMed  Google Scholar 

  85. Takeuchi H, Taki Y, Sassa Y, Hashizume H, Sekiguchi A, Nagase T, Nouchi R, Fukushima A, Kawashima R (2013) White matter structures associated with emotional intelligence: evidence from diffusion tensor imaging. Hum Brain Mapp 34(5):1025–1034

    Article  PubMed  Google Scholar 

  86. Ture U, Yasargil MG, Friedman AH, Al-Mefty O (2000) Fiber dissection technique: lateral aspect of the brain. Neurosurgery 47:417–426

    Article  CAS  PubMed  Google Scholar 

  87. Tusa RJ, Ungerleider LG (1985) The inferior longitudinal fasciculus: a reexamination in humans and monkeys. Ann Neurol 18:583–591

    Article  CAS  PubMed  Google Scholar 

  88. Vandenberghe R, Price C, Wise R, Josephs O, Frackowiak RSJ (1996) Functional anatomy of a common semantic system for words and pictures. Nature 383:254–256

    Article  CAS  PubMed  Google Scholar 

  89. Williamson PD, Thadani VM, Darcey TM, Spencer DD, Spencer SS, Mattson RH (1992) Occipital lobe epilepsy: clinical characteristics, seizure spread patterns, and results of surgery. Ann Neurol 31:3–13

    Article  CAS  PubMed  Google Scholar 

  90. Wilson CL, Babb TL, Halgren E, Crandall PH (1983) Visual receptive fields and response properties of neurons in human temporal lobe and visual pathways. Brain 106:473–502

    Article  PubMed  Google Scholar 

  91. Wilson CL, Engel J Jr (1993) Electrical stimulation of the human epileptic limbic cortex. Adv Neurol 63:103–113

    CAS  PubMed  Google Scholar 

  92. Wise RJS, Howard D, Mummery CJ, Fletcher P, Leff A, Bqchel C et al (2000) Noun imageability and the temporal lobes. Neuro- psychologia 38:985–994

    CAS  Google Scholar 

  93. Wong. A.C. Palmeri. T.J. Rogers. B.P. Gore. J.C. Gauthier. I. (2009). Beyond shape: how you learn about objects affects how they are represented in visual cortex. PLoS One. 22;4(12):e8405

Download references

Acknowledgments

We acknowledge Dr Roberta Schivalocchi from Ferrara University-Hospital (Italy) for her constant support and we would like to express our sincere thanks for the enthusiastic help and courtesy in providing the fine artistic illustrations of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Latini.

Additional information

Comments

Guilherme Carvalhal Ribas, São Paulo, Brazil

The fiber dissection technique was already employed by early anatomists as Thomas Willis (1621–1675), Nicholas Steno (1638–1686), Raymond Vieussens (1641–1715), Charles Bell (1774–1842), Johan Christian Reil (1759–1813), Achille Foville (1799–1878), Bartholomeo Panizza (1785–1867), Louis Pierre Gratiolet (1815–1865), and Theodor H Meynert (1833–1892) among others(2,5) in order to understand the complex white matter architectural organization and to better describe its tracts, fasciculi, and commissural fibers, but it was only with the contribution of Joseph Klinger (1888–1963) that this technique became more feasible and widely used(4,5). Klinger described in 1935 the freezing technique of previously formalin-fixed brains, which generates the development of formalin ice crystals between the fibers which facilitates their dissection that is done by their progressive peeling(3).

More recently, the advent of tractography, which is a 3D MRI modeling technique based on collected data obtained by diffusion tensor imaging (DTI) that evaluates brain water diffusion in a tensor, which is the major axis parallel to the direction of fibers—different bundles of fiber tracts make the water diffuse asymmetrically in a tensor, which is directly related with the number of fibers and is known as anisotropy—is generating a significant amount of imaging data which subsequently requires to be validated, and the Klinger technique or its variations still are the most practical way of doing it.

In this direction, Dr. Latini, taking into consideration also previous DTI findings, studied the inferior longitudinal fasciculus and its related subcomponents. Although based on the dissections of only four hemispheres of two brain specimens, this interesting article brings some more light into the understanding of the complex inferior longitudinal fascicle, and, above all, has the merit of describing a new bundle, the lingual-amygdaloidal bundle.

Nevertheless, for a proper appraisal of the author’s study, it is important to consider that both fiber dissection and DTI techniques have similar limitations regarding the identification of small bundles, particularly in regions where fibers intermingle. Even when the fiber dissection technique is done under magnification, it is very difficult to dissect and peel the multiple layers of fibers that are intermingled with fibers that run in other directions, and also to securely identify the fibers that belong to different fasciculi which are superimposed and running along the same direction. On the other hand, the DTI technique, although extremely helpful, uses a computer-based image analysis to do a nondirect measure of the fiber’s structure and integrity, which implies some degree of subjectiveness since this technique is in part dependent on a number of factors under the control of the experimenter, such as the angular and anisotropy thresholds and the choice of the tractography algorithm itself, as stated by Catani et al.(1).

Considering these methodological issues and the small number of dissected specimens, the results of this elegant study, and their discussed inferential functional roles, should now motivate further research of this important subject in order to corroborate its findings and considerations.

References

1. Catani M, Schotten MT (2012) Introduction to diffusion imaging tractography. In: Atlas of Human Brain Connections. New York: Oxford University Press.

2. Clarke E, O’Malley CD (eds) (1996) The human brain and spinal cord: a historical study illustrated by writings from antiquity to the twentieth century. San Francisco: Norman.

3. Klinger J (1935) Erleichterung der makroskopischen Präparation des Gehirn durch den Gefrierprozess. Schweiz Arch-Neurol Psychiat 36: 247–256 apud Türe U, Yasargil MG, Friedman AH, Al-Mefty O (2000) Fiber dissection technique: lateral aspect of the brain. Neurosurgery 47: 417–427.

4. Ludwig E, Klinger J (1956) Atlas Cerebri Humani. Basel: S. Karger.

5. Türe U, Yasargil MG, Friedman AH, Al-Mefty O (2000) Fiber dissection technique: lateral aspect of the brain. Neurosurgery 47: 417–427.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latini, F. New insights in the limbic modulation of visual inputs: The role of the inferior longitudinal fasciculus and the Li-Am bundle. Neurosurg Rev 38, 179–190 (2015). https://doi.org/10.1007/s10143-014-0583-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-014-0583-1

Keywords

Navigation