Skip to main content

Advertisement

Log in

Linac radiosurgery as a tool in neurosurgery

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Stereotactic radiosurgery is a radiation technique that uses a high radiation dose focused on a stereotactic defined intracranial target in single fraction with high precision. In the 1980s, linear accelerators were introduced as a tool for radiosurgery beneath the already accepted gamma unit. Technique and mechanical precision of LINACs have become equal to the gamma unit and LINAC radiosurgery became more and more used recently. From January 1996 to August 2003 we have treated 237 patients with LINAC radiosurgery. A combination of the University of Florida system and the X Knife System, developed by Radionics, was used in all patients. A number of 110 patients had 161 brain metastases treated, whereas the local tumor control rate was 89.4%. The 1-year survival rate was 54.9% with a median survival of 54 weeks. In 55 patients we have treated 57 meningiomas, mostly located at the skull base (37 out of 55 patients). Local tumor control rate in our patients with skull base meningiomas at 5-year follow up was 97.2%. In this time period, we have also treated acoustic schwannoma, glioma, pituitary adenoma, arteriovenous malformations and patients with trigeminal neuralgia. LINAC radiosurgery has become a daily tool in neurosurgery and changed treatment strategies especially in the treatment of brain metastases and skull base meningiomas towards a less aggressive and multimodality approach. It is not only an alternative to open surgery, but also a very effective adjuvant treatment modality in many neuro-oncological patients, which helps us to enhance tumor control rate, minimize morbidity and increase postoperative quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alexander E III, Moriarty TM, Davis RB, Wen PY, Fine HA, Black PM, Kooy HM, Loeffler JS (1995) Stereotactic radiosurgery for definitive, noninvasive treatment of metastases. J Natl Cancer Inst 87:34–40

    Google Scholar 

  2. Andrews DW, Scott CB, Sperduto PW, Flanders AE, Gasper LF, Schell MC, Werner-Wasik M, Demas W, Ryu J, Bahary JP, Souhami L, Rotman M, Mehta MP, Curran WJ Jr (2004) Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet 363(9422):1665–1672

    Article  Google Scholar 

  3. Auchter RM, Lamond JP, Alexander E, Buatti JM, Chappell R, Friedman WA, Kinsella TJ, Levin AB, Noyes WR, Schultz CJ, Loeffler JS, Mehta MP (1996) A multiinstitutional outcome and prognostic factor analysis of radiosurgery for resectable single brain metastasis. Int J Radiat Oncol Biol Phys 35:27–35

    Google Scholar 

  4. Betti OO, Derechinsky VE (1984) Hyperselective encephalic irradiation with a linear accelerator. Acta Neurochir Suppl (Wien) 33:385–390

    Google Scholar 

  5. Bindal AK, Bindal RK, Hess KR, Shiu A, Hassenbusch SJ, Shi WM, Sawaya R (1996) Surgery versus radiosurgery in the treatment of brain metastases. J Neurosurg 84:748–754

    Google Scholar 

  6. Black PML (1993) Meningiomas. Neurosurgery 32:643–657

    Google Scholar 

  7. Black PML, Villavicencio AT, Rhouddou C, Loeffler JS (2001) Aggressive surgery and focal radiation in the management of meningiomas of the skull base: preservation of function with maintenance of local control. Acta Neurochir 143:555–562

    Google Scholar 

  8. Chang SD, Adler JR Jr (1997) Treatment of cranial base meningiomas with linear accelerator radiosurgery. Neurosurgery 41:1019–1025

    Google Scholar 

  9. Chang SD, Adler JR Jr, Martin DP (1998) LINAC radiosurgery for cavernous sinus meningiomas. Stereotact Funct Neurosurg 71:43–50

    Google Scholar 

  10. Chang SD, Levy RP, Adler JR Jr (1998) Stereotactic radiosurgery for angiographically occult vascular malformations: 14 year experience. Neurosurgery 43:213–221

    Google Scholar 

  11. Cho KH, Hall WA, Lee AK (1998) Stereotactic radiosurgery for patients with single brain metastasis. J Radiosurg 1:79–85

    Google Scholar 

  12. Colombo F, Benedetti A, Pozza F (1985) External stereotactic irradiation by linear accelerator. Neurosurgery 16:154–160

    Google Scholar 

  13. Colombo F, Francescon P (1998) Clinical linear accelerator radiosurgery. In: Gildenberg PL, Tasker RR (eds) Textbook of stereotactic and functional neurosurgery. McGraw-Hill, New York, pp 757–762

    Google Scholar 

  14. Colombo F, Pozza F, Chierego G, Casentini L, De Luca G, Francescon P (1994) Linear accelerator radiosurgery of cerebral arteriovenous malformations: an update. Neurosurgery 34:14–21

    Google Scholar 

  15. Couldwell WT, Fukushima T, Giannotta SL, Weiss MH (1996) Petroclival meningiomas: surgical experience in 109 cases. J Neurosurg 84:20–28

    Google Scholar 

  16. De Salles AAF, Buxton W, Solberg T (1998) Functional disorders: linear accelerator radiosurgery for trigeminal neuralgia. In: Kondziolka D (eds) Radiosurgery, vol 2. Karger, Basel, pp 173–182

    Google Scholar 

  17. Deinsberger R, Tidstrand J, Sabitzer H, Lanner G (2004) LINAC radiosurgery in skull base meningiomas. Minim Invasive Neurosurg 47:333–338

    Google Scholar 

  18. Dolenc VV (1989) Anatomy and surgery of the cavernous sinus. Springer, Berlin Heidelberg New York

    Google Scholar 

  19. Dolenc VV, Kregar T, Ferluga M, Fettich M, Mozrina A (1987) Treatment of tumors invading the cavernous sinus. In: Dolenc VV (ed) The cavernous sinus: multidisciplinary approach to vascular and tumorous lesions. Springer, Wien pp 377–391

    Google Scholar 

  20. Dufour H, Muracciole X, Metellus P, Regis J, Chinot O, Grisoli F (2001) Long-term tumor control and functional outcome in patients with cavernous sinus meningiomas treated by radiotherapy with and without previous surgery: is there an alternative to aggressive tumor removal. Neurosurgery 48:285–296

    Google Scholar 

  21. Duma CM, Lunsford LD, Kondziolka D, Harsh GR, Flickinger JC (1993) Stereotactic radiosurgery of cavernous sinus meningiomas as an addition or alternative to microsurgery. Neurosurgery 32:699–705

    Google Scholar 

  22. Engenhart R, Kimmig BN, Hover KH (1993) Long term follow-up for brain metastases treated by percutaneous stereotactic single high dose irradiation. Cancer 71:1353–1361

    Google Scholar 

  23. Engenhart R, Wowra B, Debus J, Kimmig BN, Hover KH, Lorenz W, Wannenmacher M (1994) The role of high dose, single-fraction irradiation in small and large intracranial arteriovenous malformations. Int J Radiat Oncol Biol Phys 30:521–529

    Google Scholar 

  24. Ferrara M, Bizzozzero L, Talamonti G, D Angelo VA (1990) Surgical treatment of 100 single brain metastases. Analysis of the results. J Neurosurg Sci 34(3–4):303–308

    Google Scholar 

  25. Flickinger JC, Kondziolka D, Lunsford LD, Coffey RJ, Goodman ML, Shaw EG, Hudgins WR, Weiner R, Harsh GR IV, Sneed PK (1994) A multi-institutional experience with stereotactic radiosurgery for dolitary brain metastasis. Int J Radiat Oncol Biol Phys 28:797–802

    Google Scholar 

  26. Flickinger JC, Kondziolka D, Maitz AH, Lunsford LD (2003) Gamma knife radiosurgery of imaging diagnosed intracranial meningioma. Int J Radiat Oncol Biol Phys 56:801–806

    Article  PubMed  Google Scholar 

  27. Friedman WA (2003) Linear accelerator radiosurgery for meningiomas. Semin Neurosurg 14(3):257–277

    Google Scholar 

  28. Friedman WA (1992) Linear accelerator radiosurgery. Clin Neurosurg 38:445–471

    Google Scholar 

  29. Friedman WA (1999) Arteriovenous malformations: radiosurgery versus surgery for arteriovenous malformations—a case for radiosurgery. Clin Neurosurg 45:18–20

    Google Scholar 

  30. Friedman WA, Bova FJ (1989) The University of Florida radiosurgery system. Surg Neurol 32:334–342

    Google Scholar 

  31. Friedman WA, Bova FJ (1989) Stereotactic radiosurgery. Contemp Neurosurg 11(12):1–7

    Google Scholar 

  32. Friedman WA, Bova FJ, Bollampally BS, Bradshaw P (2003) Analysis of factors predictive of success or complications in arterivenous malformation radiosurgery. Neurosurgery 52:296–308

    Google Scholar 

  33. Friedman WA, Spiegelman R (1992) LINAC radiosurgery. Clin N Am 3:141–166

    Google Scholar 

  34. Gerosa M, Nicolato A, Severi F (1996) Gamma knife radiosurgery for intracranial metastases: from local tumor control to increased survival. Stereotact Funct Neurosurg 66(Suppl 1):184–192

    Google Scholar 

  35. Goldsmith BJ, Wara WM, Wilson CB, Larson DA (1994) Postoperative irradiation for subtotally resected meningiomas. J Neurosurg 80:195–201

    CAS  PubMed  Google Scholar 

  36. Hakim R, Alexander E III, Loeffler JS (1998) Results of linerar accelerator based radiosurgery for intracranial meningiomas. Neurosurgery 42:446–454

    Google Scholar 

  37. Hartmann GH, Schlegel W, Sturm V (1985) Cerebral radiation surgery using moving field irradiation at a linear accelerator facility. Int J Radiat Oncol Biol Phys 11:1185–1189

    Google Scholar 

  38. Iwai Y, Yamanaka K, Nakajima H (2001) The treatment of skull base meningiomas—combining surgery and radiosurgery. J Clin Neurosci 8:528–533

    Google Scholar 

  39. Karlsson B, Kihlström L, Lindquist C (1998) Gamma knife radiosurgery for previously irradiated arteriovenous malformations. Neurosurgery 42:1–6

    Google Scholar 

  40. Kawase T, Toya S, Shiobara R, Kimura C, Nakajima H (1987) Skull base approaches for meningiomas invading the cavernous sinus. In: Dolenc VV (ed) The cavernous sinus: multidisciplinary approach to vascular and tumorous lesions. Springer, Wien pp 346–354

    Google Scholar 

  41. Kocher M, Maarouf M, Bendel M, Voges J, Muller RP, Sturm V (2004) Linac radiosurgery versus whole brain radiotherapy for brain metastases. A survival comparison on the RTOG recursive partitioning analysis. Strahlenther Onkol 180(5):263–267

    Google Scholar 

  42. Kondziolka D, Flickinger JC, Bissonette DJ, Bozik M, Lunsford LD (1997) Survival benefit of stereotactic radiosurgery for patients with malignant glial neoplasms. Neurosurgery 41:776–785

    Google Scholar 

  43. Kondziolka D, Levy EL, Niranjan A, Flickinger JC, Lunsford LD (1999) Long-term outcomes after meningioma radiosurgery: physician and patient perspective. J Neurosurg 91:44–50

    Google Scholar 

  44. Kondziolka D, Lunsford LD, Flickinger JC (1995) Reduction of hemorrhage risk after stereotactic radiosurgery for cavernous malformations. J Neurosurg 83:825–831

    Google Scholar 

  45. Leksell L (1951) The stereotaxic method and radiosurgery of the brain. Acta Chir Scand 102:316

    Google Scholar 

  46. Leksell L (1968) Cerebral radiosurgery I. Gammathalamotomy in two cases of intractable pain. Acta Chir Scand 134:585–595

    Google Scholar 

  47. Lunsford LD (1994) Contemporary management of meningiomas: radiation therapy as an adjuvant and radiosurgery as an alternative to surgical removal. J Neurosurg 80:187–190

    Google Scholar 

  48. Lunsford LD, Kondziolka D, Flickinger JC, Bissonette DJ, Jungreis CA, Maitz AH, Horton JA, Coffej RJ (1991) Stereotactic radiosurgery for arteriovenous malformations of the brain. J Neurosurg 75:512–524

    Google Scholar 

  49. Lutz W, Winston KR, Maleki N (1988) A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys 14:373–381

    Google Scholar 

  50. Maesawa S, Kondziolka D, Lunsford LD (1999) Stereotactic radiosurgery for management of deep brain cavernous malformations. Neurosurg Clin N Am 10:503–511

    Google Scholar 

  51. Mehta MP, Rozenthal JM, Levin AB (1992) Defining the role of radiosurgery in the management of brain metastases. Int J Rad Oncol Biol Phys 23:619–625

    Google Scholar 

  52. Mendenhall WM, Friedman WA, Buatti FJ, Bova FJ (1996) Preliminary results of linear accelerator radiosurgery for acoustic schwannomas. J Neurosurg 85:1013–1019

    Google Scholar 

  53. Muacevic A, Kreth FW, Horstmann GA, Schmid-Elsaesser R, Wowra B, Steiger HJ, Reulen HJ (1999) Surgery and radiotherapy compared with gamma knife radiosurgery in the treatment of solitary cerebral metastases of small diameter. J Neurosurg 91:35–43

    Google Scholar 

  54. Muacevic A, Kreth FW, Tonn JC, Wowra B (2004) Stereotactic radiosurgery for multiple brain metastases from breast carcinoma. Cancer 15(100):1705–1711

    Google Scholar 

  55. Noel G, Valery CA, Boisserie G, Cornu P, Hasboun D, Marc Simon J, Tep B, Ledu D, Delattre JY, Marsault C, Baillet F, Mazeron JJ (2004) LINAC radiosurgery for brain metastases of renal cell carcinoma. Urol Oncol 22:25–31

    Google Scholar 

  56. Patchell RA, Tibbs PA, Walsh JW (1990) A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med 332:494–500

    Google Scholar 

  57. Pendl G, Eustacchio S, Unger F (2001) Radiosurgery as alternative treatment for skull base meningiomas. J Clin Neurosci 8(Suppl 1):12–14

    Google Scholar 

  58. Posner JB, Chernik NL (1978) Intracranial metastases from systemic cancer. Adv Neurol 19:579–592

    Google Scholar 

  59. Prasad D, Steiner M, Steiner L (2000) Gamma surgery for vestibular schwannoma. J Neurosurg 92:745–759

    Google Scholar 

  60. Roche PH, Regis J, Dufour H, Fournier HD, Delsanti C, Pellet W, Grisoli F, Peragut JC (2000) Gamma knife radiosurgery in the management of cavernous sinus meningioma. J Neurosurg 93:68–73

    Google Scholar 

  61. Rutigliano MJ, Lunsford LD, Kondziolka D, Strauss MJ, Khanna V, Green M (1995) The cost effectiveness of stereotactic radiosurgery versus surgical resection in the treatment of solitary metastatic brain tumors. Neurosurgery 37:445–455

    Google Scholar 

  62. Schöggl A, Kitz K, Reddy M, Wolfsberger S, Schneider B, Dieckmann K, Ungersböck K (2000) Defining the role of Radiosurgery. Acta Neurochir 142:621–626

    Google Scholar 

  63. Sekhar LN, Babu RP, Wright DC (1994) Surgical resection of cranial base meningiomas. Neurosurg Clin N Am 5:299–330

    Google Scholar 

  64. Sekhar LN, Sen CN, Jho HD, Vanecka IP (1989) Surgical treatment of intracavernous neoplasms: a four year experience. Neurosurgery 24:18–30

    Google Scholar 

  65. Selek U, Chang EL, Hassenbusch SJ III, Shiu AS, Lang FF, Allen P, Weinberg J, Sawaya R, Maor MH (2004) Stereotactic radiosurgical treatment in 103 patients for 153 cerebral melanoma metastases Int J Radiat Oncol Biol Phys 15(59):1097–1106

    Google Scholar 

  66. Shafron DH, Friedman WA, Buatti JM, Bova FJ, Mendenhall WM (1999) Linac radiosurgery for benign meningiomas. Int J Radiat Oncol Biol Phys 43:321–327

    Google Scholar 

  67. Shehata MK, Young B, Reid B, Patchell RA, St Clair W, Sims J, Sanders M, Meigooni A, Mohiuddin M, Regine WF (2004) Stereotactic radiosurgery of 468 brain metastases < or = 2 cm: implications for SRS dose and whole brain radiotherapy. Int J Radiat Oncol Biol Phys 59(1):87–93

    Google Scholar 

  68. Shiau CY, Sneed PK, Shu HKG (1997) Radiosurgery for brain metastases: relationship of dose and pattern of enhancement to local control. Int J Radiat Oncol Biol Phys 37:375–383

    Google Scholar 

  69. Spiegelmann R, Nissim O, Menhel J, Alezra D, Pfeffer MR (2002) Linear accelerator radiosurgery for meningiomas in and around the cavernous sinus. Neurosurgery 51:1373–1378

    Google Scholar 

  70. Sturm V, Kober B, Hover KH (1987) Stereotactic percutaneous single dose irradiation of brain metastases with a linear accelerator. Int J Rad Oncol Biol Phys 13:279–282

    Google Scholar 

  71. Villavicencio AT, Black PM, Shrieve DC, Fallon MP, Alexander E, Loeffler JS (2001) Linac radiosurgery for skull base meningiomas. Acta Neurochir (Wien) 143:1141–1152

    Google Scholar 

  72. Walker AE, Robins M, Weinfeld FD (1985) Epidemiology of brain tumors: the national survey of intracranial neoplasms. Neurology 35:219

    CAS  PubMed  Google Scholar 

  73. Walker MD, Strike DA, Sheline GE (1979) An analysis of dose effect relationship in the radiotherapy of malignant gliomas. Int J Radiat Oncol Biol Phys 5:1725–1731

    Google Scholar 

  74. Wilkins RH (1985) Natural history of intracranial vascular malformations: a review. Neurosurgery 16:421–430

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Deinsberger.

Additional information

Commentaries on this paper are available at http://dx.doi.org/10.1007/s10143-005-0377-6 and http://dx.doi.org/10.1007/s10143-005-0378-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deinsberger, R., Tidstrand, J. Linac radiosurgery as a tool in neurosurgery. Neurosurg Rev 28, 79–88 (2005). https://doi.org/10.1007/s10143-005-0376-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-005-0376-7

Keywords

Navigation