Skip to main content

Advertisement

Log in

Pepsinogen C expression–related lncRNA/circRNA/mRNA profile and its co-mediated ceRNA network in gastric cancer

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

The expression of pepsinogen C (PGC) is considered an ideal negative biomarker of gastric cancer, but its pathological mechanisms remain unclear. This study aims to analyze competing endogenous RNA (ceRNA) networks related to PGC expression at a post-transcriptional level and build an experimental basis for studying the role of PGC in the progression of gastric cancer. RNA sequencing technology was used to detect the differential expression (DE) profiles of PGC-related long non-coding (lnc)RNAs, circular (circ)RNAs, and mRNAs. Ggcorrplot R package and online database were used to construct DElncRNAs/DEcircRNAs co-mediated PGC expression–related ceRNA networks. In vivo and in vitro validations were performed using quantitative reverse transcription–PCR (qRT-PCR). RNA sequencing found 637 DEmRNAs, 698 DElncRNAs, and 38 DEcircRNAs. The PPI network of PGC expression–related mRNAs consisted of 503 nodes and 1179 edges. CFH, PPARG, and MUC6 directly interacted with PGC. Enrichment analysis suggested that DEmRNAs were mainly enriched in cancer-related pathways. Eleven DElncRNAs, 13 circRNAs, and 35 miRNA–mRNA pairs were used to construct ceRNA networks co-mediated by DElncRNAs and DEcircRNAs that were PGC expression–related. The network directly related to PGC was as follows: SNHG16/hsa_circ_0008197–hsa-mir-98-5p/hsa-let-7f-5p/hsa-let-7c-5p–PGC. qRT-PCR validation results showed that PGC, PPARG, SNHG16, and hsa_circ_0008197 were differentially expressed in gastric cancer cells and tissues: PGC positively correlated with PPARG (r = 0.276, P = 0.009), SNHG16 (r = 0.35, P = 0.002), and hsa_circ_0008197 (r = 0.346, P = 0.005). PGC-related DElncRNAs and DEcircRNAs co-mediated complicated ceRNA networks to regulate PGC expression, thus affecting the occurrence and development of gastric cancer at a post-transcriptional level. Of these, the network directly associated with PGC expression was a SNHG16/hsa_circ_0008197–mir-98-5p/hsa-let-7f-5p/hsa-let-7c-5p – PGC axis. This study may form a foundation for the subsequent exploration of the possible regulatory mechanisms of PGC in gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the results of this manuscript are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

Abbreviations

PGC:

Pepsinogen C

ceRNA:

Competing endogenous RNA

DE:

Differentially expressed

lncRNAs:

Long non-coding RNAs

circRNAs:

Circular RNAs

PPI:

Protein–protein interaction

miRNA:

MicroRNA

GO:

Gene Ontology

References

  • Chen S, Xie C, Hu X (2019) lncRNA SNHG6 functions as a ceRNA to up-regulate c-Myc expression via sponging let-7c-5p in hepatocellular carcinoma. Biochem Biophys Res Commun 519(4):901–908

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Gu H, Fang T, Zhou K, Xu J, Yin X (2020) Hypoxia-induced let-7f-5p/TARBP2 feedback loop regulates osteosarcoma cell proliferation and invasion by inhibiting the Wnt signaling pathway. Aging 12(8):6891–6903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng J, Zhuo H, Xu M, Wang L, Xu H, Peng J et al (2018) Regulatory network of circRNA-miRNA-mRNA contributes to the histological classification and disease progression in gastric cancer. J Transl Med 16(1):216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Su Y, Wang S, Liu Y, Jin L, Wan Q, Liu Y, Li C, Sang X, Yang L, Liu C, Wang Z (2020) Identification of circRNA-lncRNA-miRNA-mRNA Competitive Endogenous RNA Network as Novel Prognostic Markers for Acute Myeloid Leukemia. Genes (Basel) 11(8):868. https://doi.org/10.3390/genes11080868

  • Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20(5):649–688

    CAS  PubMed  Google Scholar 

  • Ehling J, Tacke F (2016) Role of chemokine pathways in hepatobiliary cancer. Cancer Lett 379(2):173–183

    Article  CAS  PubMed  Google Scholar 

  • Elabiad MT, Zhang J (2011) Detection of pepsinogen in the neonatal lung and stomach by immunohistochemistry. J Pediatr Gastroenterol Nutr 53(4):401–403

    Article  CAS  PubMed  Google Scholar 

  • Elcheva IA, Spiegelman VS (2020) The Role of cis- and trans-Acting RNA Regulatory Elements in Leukemia. Cancers (Basel) 12(12):3854. https://doi.org/10.3390/cancers12123854

  • Fawcett J, Harris AL (1992) Cell adhesion molecules and cancer. Curr Opin Oncol 4(1):142–148

    Article  CAS  PubMed  Google Scholar 

  • Feng S, Li W, Lin H (2008) Characterization and expression of the pepsinogen C gene and determination of pepsin-like enzyme activity from orange-spotted grouper (Epinephelus coioides). Comp Biochem Physiol B: Biochem Mol Biol 149(2):275–284

    Article  Google Scholar 

  • Feng F, Chen A, Huang J, Xia Q, Chen Y, Jin X (2018) Long noncoding RNA SNHG16 contributes to the development of bladder cancer via regulating miR-98/STAT3/Wnt/β-catenin pathway axis. J Cell Biochem 119(11):9408–9418

    Article  CAS  PubMed  Google Scholar 

  • Fernández R, Vizoso F, Rodríguez JC, Merino AM, González LO, Quintela I et al (2000) Expression and prognostic significance of pepsinogen C in gastric carcinoma. Ann Surg Oncol 7(7):508–514

    Article  PubMed  Google Scholar 

  • Gong CY, Tang R, Nan W, Zhou KS, Zhang HH (2020) Role of SNHG16 in human cancer. Clin Chim Acta 503:175–80

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Huang J, Lei P, Guo L, Li X (2019) LncRNA SNHG1 promoted HGC-27 cell growth and migration via the miR-140/ADAM10 axis. Int J Biol Macromol 122:817–823

    Article  CAS  PubMed  Google Scholar 

  • Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan MI, Toor A, Ahmad F (2010) Progastriscin: structure, function, and its role in tumor progression. J Mol Cell Biol 2(3):118–127

    Article  CAS  PubMed  Google Scholar 

  • Kan JY, Wu DC, Yu FJ, Wu CY, Ho YW, Chiu YJ et al (2015) Chemokine (C-C Motif) Ligand 5 is involved in tumor-associated dendritic cell-mediated colon cancer progression through non-coding RNA MALAT-1. J Cell Physiol 230(8):1883–1894

    Article  CAS  PubMed  Google Scholar 

  • Kishi K, Kinoshita Y, Matsushima Y, Okada A, Maekawa T, Kawanami C et al (1997) Pepsinogen C gene product is a possible growth factor during gastric mucosal healing. Biochem Biophys Res Commun 238(1):17–20

    Article  CAS  PubMed  Google Scholar 

  • Li Z, An X, Zhu T, Yan T, Wu S, Tian Y, Li J, Wan X (2019) Discovering and Constructing ceRNA-miRNA-Target Gene Regulatory Networks during Anther Development in Maize. Int J Mol Sci 20(14):3480. https://doi.org/10.3390/ijms20143480

  • Li X, Xiao X, Chang R, Zhang C (2020) Comprehensive bioinformatics analysis identifies lncRNA HCG22 as a migration inhibitor in esophageal squamous cell carcinoma. J Cell Biochem 121(1):468–481

    Article  CAS  PubMed  Google Scholar 

  • Liao S, Xing S, Ma Y (2019) LncRNA SNHG16 sponges miR-98-5p to regulate cellular processes in osteosarcoma. Cancer Chemother Pharmacol 83(6):1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Liang C (2020) LncRNA LINC00483 promotes gastric cancer development through regulating MAPK1 expression by sponging miR-490-3p. Biol Res 53(1):14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Z, Rong Z, Zhang J, Zhu Z, Yu Z, Li T et al (2020) Circular RNA circCCDC9 acts as a miR-6792-3p sponge to suppress the progression of gastric cancer through regulating CAV1 expression. Mol Cancer 19(1):86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma P, Li L, Liu F, Zhao Q (2020) HNF1A-induced lncRNA HCG18 facilitates gastric cancer progression by upregulating DNAJB12 via miR-152-3p. Onco Targets Ther 13:7641–7652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ning PF, Liu HJ, Yuan Y (2005) Dynamic expression of pepsinogen C in gastric cancer, precancerous lesions and Helicobacter pylori associated gastric diseases. World J Gastroenterol 11(17):2545–2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi X, Zhang DH, Wu N, Xiao JH, Wang X, Ma W (2015) ceRNA in cancer: possible functions and clinical implications. J Med Genet 52(10):710–718

    Article  PubMed  Google Scholar 

  • Rengganaten V, Huang CJ, Tsai PH, Wang ML, Yang YP, Lan YT, Fang WL, Soo S, Ong HT, Cheong SK, Choo KB, Chiou SH (2020) Mapping a Circular RNA-microRNA-mRNA-Signaling Regulatory Axis That Modulates Stemness Properties of Cancer Stem Cell Populations in Colorectal Cancer Spheroid Cells. Int J Mol Sci 21(21):7864. https://doi.org/10.3390/ijms21217864

  • Rodríguez CI, Setaluri V (2014) Cyclic AMP (cAMP) signaling in melanocytes and melanoma. Arch Biochem Biophys 563:22–27

    Article  PubMed  Google Scholar 

  • Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3):353–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen S, Jiang J, Yuan Y (2017) Pepsinogen C expression, regulation and its relationship with cancer. Cancer Cell Int 17:57. https://doi.org/10.1186/s12935-017-0426-6

  • Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F (2020) Gastric cancer. Lancet 396(10251):635–648

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Cho KB, Li Y, Tao G, Xie Z, Guo B (2019) Long Noncoding RNA (lncRNA)-Mediated Competing Endogenous RNA Networks Provide Novel Potential Biomarkers and Therapeutic Targets for Colorectal Cancer. Int J Mol Sci 20(22):5758. https://doi.org/10.3390/ijms20225758

  • Wang JY, Yang Y, Ma Y, Wang F, Xue A, Zhu J et al (2020) Potential regulatory role of lncRNA-miRNA-mRNA axis in osteosarcoma. Biomed Pharmacother 121:109627

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Ding Y, Wu Y, Wang X (2020) Identification of the complex regulatory relationships related to gastric cancer from lncRNA-miRNA-mRNA network. J Cell Biochem 121(1):876–887

    Article  CAS  PubMed  Google Scholar 

  • Xian D, Zhao Y (2019) LncRNA KCNQ1OT1 enhanced the methotrexate resistance of colorectal cancer cells by regulating miR-760/PPP1R1B via the cAMP signalling pathway. J Cell Mol Med 23(6):3808–3823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin B, Liu Y, Li G, Xu Y, Cui W (2019) The role of lncRNA SNHG16 in myocardial cell injury induced by acute myocardial infarction and the underlying functional regulation mechanism. Panminerva Med. https://doi.org/10.23736/S0031-0808.19.03697-8

  • Xu YY, Liu H, Su L, Xu N, Xu DH, Liu HY et al (2019) PPARγ inhibits breast cancer progression by upregulating PTPRF expression. Eur Rev Med Pharmacol Sci 23(22):9965–9977

    PubMed  Google Scholar 

  • Yan S, Han X, Xue H, Zhang P, Guo X, Li T et al (2015) Let-7f inhibits glioma cell proliferation, migration, and invasion by targeting periostin. J Cell Biochem 116(8):1680–1692

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Wei W (2019) SNHG16: a novel long-non coding RNA in human cancers. Onco Targets Ther 12:11679–11690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • YiRen H, YingCong Y, Sunwu Y, Keqin L, Xiaochun T, Senrui C et al (2017) Long noncoding RNA MALAT1 regulates autophagy associated chemoresistance via miR-23b-3p sequestration in gastric cancer. Mol Cancer 16(1):174

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors received financial support from the National Natural Science Foundation of China (No.81772987).

Author information

Authors and Affiliations

Authors

Contributions

Yuan Yuan and Qian Xu conceived and designed this study. Li-rong Yan, Han-xi Ding, Shi-xuan Shen, and Xiao-dong Lu were responsible for the data analysis and performed data interpretation. Li-rong Yan and Han-xi Ding wrote the paper. Qian Xu and Yuan Yuan revised the manuscript.

Corresponding authors

Correspondence to Yuan Yuan or Qian Xu.

Ethics declarations

Ethics approval

The study was supported by the research ethics committee of the First Affiliated Hospital of China Medical University ([2021]94).

Consent to participate

The written informed consents in this study were signed by all patients.

Consent for publication

All co-authors have agreed to publish the paper.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 232 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Lr., Ding, Hx., Shen, Sx. et al. Pepsinogen C expression–related lncRNA/circRNA/mRNA profile and its co-mediated ceRNA network in gastric cancer. Funct Integr Genomics 21, 605–618 (2021). https://doi.org/10.1007/s10142-021-00803-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-021-00803-x

Keywords

Navigation