Skip to main content

Advertisement

Log in

Searching whole genome sequences for biochemical identification features of emerging and reemerging pathogenic Corynebacterium species

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Biochemical tests are traditionally used for bacterial identification at the species level in clinical microbiology laboratories. While biochemical profiles are generally efficient for the identification of the most important corynebacterial pathogen Corynebacterium diphtheriae, their ability to differentiate between biovars of this bacterium is still controversial. Besides, the unambiguous identification of emerging human pathogenic species of the genus Corynebacterium may be hampered by highly variable biochemical profiles commonly reported for these species, including Corynebacterium striatum, Corynebacterium amycolatum, Corynebacterium minutissimum, and Corynebacterium xerosis. In order to identify the genomic basis contributing for the biochemical variabilities observed in phenotypic identification methods of these bacteria, we combined a comprehensive literature review with a bioinformatics approach based on reconstruction of six specific biochemical reactions/pathways in 33 recently released whole genome sequences. We used data retrieved from curated databases (MetaCyc, PathoSystems Resource Integration Center (PATRIC), The SEED, TransportDB, UniProtKB) associated with homology searches by BLAST and profile Hidden Markov Models (HMMs) to detect enzymes participating in the various pathways and performed ab initio protein structure modeling and molecular docking to confirm specific results. We found a differential distribution among the various strains of genes that code for some important enzymes, such as beta-phosphoglucomutase and fructokinase, and also for individual components of carbohydrate transport systems, including the fructose-specific phosphoenolpyruvate-dependent sugar phosphotransferase (PTS) and the ribose-specific ATP-binging cassette (ABC) transporter. Horizontal gene transfer plays a role in the biochemical variability of the isolates, as some genes needed for sucrose fermentation were seen to be present in genomic islands. Noteworthy, using profile HMMs, we identified an enzyme with putative alpha-1,6-glycosidase activity only in some specific strains of C. diphtheriae and this may aid to understanding of the differential abilities to utilize glycogen and starch between the biovars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott DW, Higgins MA, Hyrnuik S, Pluvinage B, Lammerts van Bueren A, Boraston AB (2010) The molecular basis of glycogen breakdown and transport in Streptococcus pneumoniae. Mol Microbiol 77:183–199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adderson EE, Boudreaux JW, Cummings JR, Pounds S, Wilson DA, Procop GW, Hayden RT (2008) Identification of clinical coryneform bacterial isolates: comparison of biochemical methods and sequence analysis of 16S rRNA and rpoB genes. J Clin Microbiol 46:921–927

    Article  PubMed  CAS  Google Scholar 

  • Ajmal S, Saleh OA, Beam E (2017) Development of high-grade daptomycin resistance in a patient being treated for Corynebacterium striatum infection. Antimicrob Agents Chemother 61:e00705–e00717. https://doi.org/10.1128/AAC.00705-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Alibi S, Ferjani A, Gaillot O, Marzouk M, Courcol R, Boukadida J (2015) Identification of clinically relevant Corynebacterium strains by Api Coryne, MALDI-TOF-mass spectrometry and molecular approaches. Pathol Biol 63:153–157

    Article  PubMed  CAS  Google Scholar 

  • Almeida S, Sousa C, Abreu V, Diniz C, Dorneles EMS, Lage AP, Barh D, Azevedo V (2017) Exploration of nitrate reductase metabolic pathway in Corynebacterium pseudotuberculosis. Int J Genomics 2017:1–12

    Article  CAS  Google Scholar 

  • Almuzara MN, De Mier C, Rodríguez CR et al (2006) Evaluación del sistema API Coryne, versión 2.0, para la identificación de bacilos gram-positivos difteroides de importancia clínica. Rev Argent Microbiol 38(4):197–201

    PubMed  CAS  Google Scholar 

  • Andersson U, Rådström P (2002) β-glucose 1-phosphate-interconverting enzymes in maltose-and trehalose-fermenting lactic acid bacteria. Environ Microbiol 4:81–88

    Article  PubMed  CAS  Google Scholar 

  • Baio PV, Mota HF, Freitas AD, Gomes DL, Ramos JN, Sant'Anna LO, Souza MC, Camello TC, Hirata Junior R, Vieira VV, Mattos-Guaraldi AL (2013) Clonal multidrug-resistant Corynebacterium striatum within a nosocomial environment, Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz 108(1):23–29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belchior E, Henry S, Badell E, Collet L, Benoit-Cattin T, de Montera AM, Guiso N, Patey O, Levy-Bruhl D, Filleul L, Chieze F, Olivier S (2017) Diphtheria in Mayotte, 2007–2015. Emerg Infect Dis 23:1218–1220

    Article  PubMed  PubMed Central  Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (2012) Biochemistry (7th, International ed). WH Freeman and company 7:338

  • Bernard K (2012) The genus Corynebacterium and other medically relevant coryneform-like bacteria. J Clin Microbiol 50:3152–3158

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernard KA, Funke G (2012) Genus Corynebacterium. In: Bergey's manual of systematic bacteriology, vol 5, pp 245–289

    Google Scholar 

  • Bhattacharya D, Cheng J (2013) i3Drefine software for protein 3D structure refinement and its assessment in CASP10. PLoS One 8:e69648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blombach B, Seibold GM (2010) Carbohydrate metabolism in Corynebacterium glutamicum and applications for the metabolic engineering of L-lysine production strains. Appl Microbiol Biotechnol 86:1313–1322

    Article  PubMed  CAS  Google Scholar 

  • Brettin T, Davis JJ, Disz T et al (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buckley AA, Faustoferri RC, Quivey RG Jr (2014) β-Phosphoglucomutase contributes to aciduricity in Streptococcus mutans. Microbiology 160:818–827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cerdeño-Tárraga AM, Efstratiou A, Dover LG, Holden MT, Pallen M, Bentley SD, Besra GS, Churcher C, James KD, De Zoysa A, Chillingworth T, Cronin A, Dowd L, Feltwell T, Hamlin N, Holroyd S, Jagels K, Moule S, Quail MA, Rabbinowitsch E, Rutherford KM, Thomson NR, Unwin L, Whitehead S, Barrell BG, Parkhill J (2003) The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res 31(22):6516–6523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chandran R, Puthukkichal DR, Suman E, Mangalore SK (2016) Diphtheroids—important nosocomial pathogens. J Clin Diagn Res 10:28–31

    Google Scholar 

  • Chaudhari NM, Gupta VK, Dutta C (2016) BPGA—an ultra-fast pan-genome analysis pipeline. Sci Rep 6:24373. https://doi.org/10.1038/srep24373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clermont L, Macha A, Müller L et al (2015) The α-glucan phosphorylase MalP of Corynebacterium glutamicum is subject to transcriptional regulation and competitive inhibition by ADP-glucose. J Bacteriol 197:1394–1407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clifton MC, Simon MJ, Erramilli S et al (2015) In vitro reassembly of the ribose ATP-binding cassette transporter reveals a distinct set of transport complexes. J Biol Chem 290:5555–5565

    Article  PubMed  CAS  Google Scholar 

  • Dawson NL, Lewis TE, Das S, Lees JG, Lee D, Ashford P, Orengo CA, Sillitoe I (2017) CATH: an expanded resource to predict protein function through structure and sequence. Nucleic Acids Res 45:D289–D295

    Article  PubMed  CAS  Google Scholar 

  • Edwards B, Hunt AC, Hoskisson PA (2011) Recent cases of non-toxigenic Corynebacterium diphtheriae in Scotland: justification for continued surveillance. J Med Microbiol 60:561–562

    Article  PubMed  Google Scholar 

  • Efstratiou A, George RC (1996) Screening tests for the presumptive identification of Corynebacterium diphtheriae in a diagnostic laboratory. J Clin Microbiol 34:3251

    PubMed  PubMed Central  CAS  Google Scholar 

  • Elbourne LD, Tetu SG, Hassan KA, Paulsen IT (2017) TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res 45(D1):D320–D324

    Article  PubMed  CAS  Google Scholar 

  • Encinas F, Marin MA, Ramos JN, Vieira VV, Mattos-Guaraldi AL, Vicente AC (2015) Genomic analysis of a nontoxigenic, invasive Corynebacterium diphtheriae strain from Brazil. Mem Inst Oswaldo Cruz 110(6):817–819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Engels V, Georgi T, Wendisch VF (2008) ScrB (Cg2927) is a sucrose-6-phosphate hydrolase essential for sucrose utilization by Corynebacterium glutamicum. FEMS Microbiol Lett 289(1):80–89

    Article  PubMed  CAS  Google Scholar 

  • Finn RD, Clements J, Arndt W et al. (2015) HMMER web server: 2015 update. Nucleic Acids Res 43(W1):W30-W38. https://doi.org/10.1093/nar/gkv397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forbes BA (2017) Did I hear you correctly? The organism identified was Corynebacterium diphtheriae? Clin Microbiol Newsl 39:35–41

    Article  Google Scholar 

  • Funke G, Frodl R (2008) Comprehensive study of Corynebacterium freneyi strains and extended and emended description of Corynebacterium freneyi Renaud, Aubel, Riegel, Meugnier, and Bollet 2001. J Clin Microbiol 46(2):638–643

    Article  PubMed  Google Scholar 

  • Funke G, Lawson PA, Bernard KA, Collins MD (1996) Most Corynebacterium xerosis strains identified in the routine clinical laboratory correspond to Corynebacterium amycolatum. J Clin Microbiol 34:1124–1128

    PubMed  PubMed Central  CAS  Google Scholar 

  • Funke G, Renaud FN, Freney J, Riegel P (1997) Multicenter evaluation of the updated and extended API (RAPID) Coryne database 2.0. J Clin Microbiol 35(12):3122–3126

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gladysheva IV, Cherkasov SV, Khlopko YA, Plotnikov AO, Gogoleva NE (2016) Draft Genome Sequence of Strain ICIS 53 Isolated from a Female Urogenital Tract. Genome Announc 4(6):e01267–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hacker E, Antunes CA, Mattos-Guaraldi AL, Burkovski A, Tauch A (2016) Corynebacterium ulcerans, an emerging human pathogen. Future Microbiol 11:1191–1208

    Article  PubMed  CAS  Google Scholar 

  • Hahn WO, Werth BJ, Butler-Wu SM, Rakita RM (2016) Multidrug-resistant Corynebacterium striatum associated with increased use of parenteral antimicrobial drugs. Emerg Infect Dis 22:1908–1914

    Article  PubMed Central  CAS  Google Scholar 

  • Hall AH, Cassiday PK, Bernard KA et al (2010) Novel Corynebacterium diphtheriae in domestic cats. Emerg Infect Dis 16:688–691

    Article  PubMed  PubMed Central  Google Scholar 

  • Henrich A, Kuhlmann N, Eck A et al (2013) Maltose uptake by the novel ABC transport system MusEFGK2I causes increased expression of ptsG in Corynebacterium glutamicum. J Bacteriol 195:2573–2584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holden HM, Rayment I, Thoden JB (2003) Structure and function of enzymes of the Leloir pathway for galactose metabolism. J Biol Chem 278:43885–43888

    Article  PubMed  CAS  Google Scholar 

  • Huey R, Morris GM (2003) AutoDock tools. The Scripps Research Institute, La Jolla

    Google Scholar 

  • Ikeda M (2012) Sugar transport systems in Corynebacterium glutamicum: features and applications to strain development. Appl Microbiol Biotechnol 96:1191–1200

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M, Mizuno Y, Awane S, Hayashi M, Mitsuhashi S, Takeno S (2011) Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum. Appl Microbiol Biotechnol 90:1443–1451

    Article  PubMed  CAS  Google Scholar 

  • Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, Xu J (2012) Template-based protein structure modeling using the RaptorX web server. Nat Protoc 7:1511–1522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim C, Song S, Park C (1997) The D-allose operon of Escherichia coli K-12. J Bacteriol 179:7631–7637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kolios AGA, Cozzio A, Zinkernagel AS, French LE, Kündig TM (2017) Cutaneous Corynebacterium infection presenting with disseminated skin nodules and ulceration. Case Rep Dermatol 9:8–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Leal SM Jr, Jones M, Gilligan PH (2016) Clinical significance of commensal gram-positive rods routinely isolated from patient samples. J Clin Microbiol 54:2928–2936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Letek M, Ordonez E, Fernández-Natal I et al (2006) Identification of the emerging skin pathogen Corynebacterium amycolatum using PCR-amplification of the essential divIVA gene as a target. FEMS Microbiol Lett 265(2):256–263

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Derbyshire MK, Gonzales NR et al. (2014) CDD: NCBI's conserved domain database. Nucleic Acids Res 43(Database issue):D222-D226. https://doi.org/10.1093/nar/gku1221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez-Martinez L, Suárez AI, Winstanley J et al (1995) Phenotypic characteristics of 31 strains of Corynebacterium striatum isolated from clinical samples. J Clin Microbiol 33(9):2458–2461

    PubMed  PubMed Central  CAS  Google Scholar 

  • Martins C, Faria L, Souza M (2009) Microbiological and host features associated with corynebacteriosis in cancer patients: a five-year study. Mem Inst Oswaldo Cruz 104:905–913

    Article  PubMed  Google Scholar 

  • Mattos-Guaraldi AL, Formiga LCD (1998) Bacteriological properties of a sucrose-fermenting Corynebacterium diphtheriae strain isolated from a case of endocarditis. Curr Microbiol 37:156–158

  • Mattos-Guaraldi AL, Guimarães LC, Santos CS, Veras AA, Carneiro AR, Soares SC, Ramos JN, Souza C, Vieira VV, Hirata R, Azevedo V, Pacheco LG, Silva A, Ramos RT (2015) Draft genome sequence of 1961 BR-RJ/09, a multidrug-susceptible strain isolated from the urine of a hospitalized 37-year-old female patient. Genome Announc 3(4):e00869–15. https://doi.org/10.1128/genomeA.00869-15

  • Meinel DM, Kuehl R, Zbinden R, Boskova V, Garzoni C, Fadini D, Dolina M, Blümel B, Weibel T, Tschudin-Sutter S, Widmer AF, Bielicki JA, Dierig A, Heininger U, Konrad R, Berger A, Hinic V, Goldenberger D, Blaich A, Stadler T, Battegay M, Sing A, Egli A (2016) Outbreak investigation for toxigenic Corynebacterium diphtheriae wound infections in refugees from Northeast Africa and Syria in Switzerland and Germany by whole genome sequencing. Clin Microbiol Infect 22:1003.e1–1003.e8

    Article  CAS  Google Scholar 

  • Moon M-W, Kim HJ, Oh TK et al (2005) Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032. FEMS Microbiol Lett 244:259–266

    Article  PubMed  CAS  Google Scholar 

  • Nentwich SS, Brinkrolf K, Gaigalat L, Huser AT, Rey DA, Mohrbach T, Marin K, Puhler A, Tauch A, Kalinowski J (2009) Characterization of the LacI-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032. Microbiology 155:150–164

    Article  PubMed  CAS  Google Scholar 

  • Nishimura T, Vertès AA, Shinoda Y, Inui M, Yukawa H (2007) Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor. Appl Microbiol Biotechnol 75:889–897

    Article  PubMed  CAS  Google Scholar 

  • Oberto J (2013) SyntTax: a web server linking synteny to prokaryotic taxonomy. BMC Bioinformatics 14:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Overbeek R, Begley T, Butler R, Choudhuri JV, Chuang HY, Cohoon M, de Crécy-Lagard V, Diaz N, Disz T, Edwards R, Fonstein M, Frank ED, Gerdes S, Glass EM, Goesmann A, Hanson A, Iwata-Reuyl D, Jensen R, Jamshidi N, Krause L, Kubal M, Larsen N, Linke B, McHardy A, Meyer F, Neuweger H, Olsen G, Olson R, Osterman A, Portnoy V, Pusch GD, Rodionov DA, Rückert C, Steiner J, Stevens R, Thiele I, Vassieva O, Ye Y, Zagnitko O, Vonstein V (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33:5691–5702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pacheco LG, Mattos-Guaraldi AL, Santos CS, Veras AA, Guimarães LC, Abreu V, Pereira FL, Soares SC, Dorella FA, Carvalho AF, Leal CG, Figueiredo HC, Ramos JN, Vieira VV, Farfour E, Guiso N, Hirata R Jr, Azevedo V, Silva A, Ramos RT (2015) Draft genome sequences of two species of “difficult-to-identify” human-pathogenic Corynebacteria: implications for better identification tests. J Genomics 3:82–84. https://doi.org/10.7150/jgen.12886

  • Palacios L, Vela AI, Molin K, Fernandez A, Latre MV, Chacon G, Falsen E, Fernandez-Garayzabal JF (2010) Characterization of some bacterial strains isolated from animal clinical materials and identified as Corynebacterium xerosis by molecular biological techniques. J Clin Microbiol 48:3138–3145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pennie RA, Malik AS, Wilcox L (1996) Misidentification of toxigenic Corynebacterium diphtheriae as a Corynebacterium species with low virulence in a child with endocarditis. J Clin Microbiol 34:1275–1276

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  PubMed  CAS  Google Scholar 

  • Pimenta FP, Hirata R Jr, Rosa AC et al (2008) A multiplex PCR assay for simultaneous detection of Corynebacterium diphtheriae and differentiation between non-toxigenic and toxigenic isolates. J Med Microbiol 57:1438–1439

    Article  PubMed  Google Scholar 

  • Ramos JN (2014) Caracterização de estirpes sugestivas de corinebactérias isoladas de sítios intravenosos. Dissertation, Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz. Rio de Janeiro

  • Renaud FN, Dutaur M, Daoud S, Aubel D, Riegel P, Monget D, Freney J (1998) Differentiation of Corynebacterium amycolatum, C. minutissimum, and C. striatum by carbon substrate assimilation tests. J Clin Microbiol 36(12):3698–3702

    PubMed  PubMed Central  CAS  Google Scholar 

  • Renaud FN, Aubel D, Riegel P, Meugnier H, Bollet C (2001) Corynebacterium freneyi sp. nov., alpha-glucosidase-positive strains related to Corynebacterium xerosis. Int J Syst Evol Microbiol 51(5):1723–1728

    Article  PubMed  CAS  Google Scholar 

  • Reynolds GE, Saunders H, Matson A, O'Kane F, Roberts SA, Singh SK, Voss LM, Kiedrzynski T (2016) Public health action following an outbreak of toxigenic cutaneous diphtheria in an Auckland refugee resettlement centre. Commun Dis Intell Q Rep 40:E475–E481

    PubMed  Google Scholar 

  • Roach DJ, Burton JN, Lee C, Stackhouse B, Butler-Wu SM, Cookson BT, Shendure J, Salipante SJ (2015) A Year of Infection in the Intensive Care Unit: Prospective Whole Genome Sequencing of Bacterial Clinical Isolates Reveals Cryptic Transmissions and Novel Microbiota. PLoS Genet 11(7):e1005413. https://doi.org/10.1371/journal.pgen.1005413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rothery RA, Magalon A, Giordano G, Guigliarelli B, Blasco F, Weiner JH (1998) The molybdenum cofactor of Escherichia coli nitrate reductase A (NarGHI). Effect of a mobAB mutation and interactions with [Fe-S] clusters. J Biol Chem 273:7462–7469

    Article  PubMed  CAS  Google Scholar 

  • Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944–945

    Article  PubMed  CAS  Google Scholar 

  • Sangal V, Hoskisson PA (2016) Evolution, epidemiology and diversity of Corynebacterium diphtheriae: new perspectives on an old foe. Infect Genet Evol 43:364–370

    Article  PubMed  Google Scholar 

  • Sangal V, Burkovski A, Hunt AC et al (2014) A lack of genetic basis for biovar differentiation in clinically important Corynebacterium diphtheriae from whole genome sequencing. Infect Genet Evol 21:54–57

    Article  PubMed  CAS  Google Scholar 

  • Seibold GM, Wurst M, Eikmanns BJ (2009) Roles of maltodextrin and glycogen phosphorylases in maltose utilization and glycogen metabolism in Corynebacterium glutamicum. Microbiology 155:347–358

    Article  PubMed  CAS  Google Scholar 

  • Soares SC, Geyik H, Ramos R et al (2016) GIPSy: genomic island prediction software. J Biotechnol 232:2–11

    Article  PubMed  CAS  Google Scholar 

  • Song Y, DiMaio F, Wang RY et al (2013) High-resolution comparative modeling with RosettaCM. Structure 21:1735–1742

    Article  PubMed  CAS  Google Scholar 

  • Torres Lde F, Ribeiro D, Hirata R Jr, Pacheco LG, Souza MC, dos Santos LS, dos Santos CS, Salah M, Costa MM, Ribeiro MG, Selim SA, Azevedo VA, Mattos-Guaraldi AL (2013) Multiplex polymerase chain reaction to identify and determine the toxigenicity of Corynebacterium spp with zoonotic potential and an overview of human and animal infections. Mem Inst Oswaldo Cruz 108(3):272–279

    Article  PubMed Central  CAS  Google Scholar 

  • Trost E, Al-Dilaimi A, Papavasiliou P, Schneider J, Viehoever P, Burkovski A, Soares SC, Almeida SS, Dorella FA, Miyoshi A, Azevedo V, Schneider MP, Silva A, Santos CS, Santos LS, Sabbadini P, Dias AA, Jr HR, Mattos-Guaraldi AL, Tauch A (2011) Comparative analysis of two complete Corynebacterium ulcerans genomes and detection of candidate virulence factors. BMC Genomics 12:383

    Article  PubMed  PubMed Central  Google Scholar 

  • Trost E, Blom J, de Castro Soares S, Huang IH, al-Dilaimi A, Schroder J, Jaenicke S, Dorella FA, Rocha FS, Miyoshi A, Azevedo V, Schneider MP, Silva A, Camello TC, Sabbadini PS, Santos CS, Santos LS, Hirata R, Mattos-Guaraldi AL, Efstratiou A, Schmitt MP, Ton-That H, Tauch A (2012) Pangenomic study of Corynebacterium diphtheriae that provides insights into the genomic diversity of pathogenic isolates from cases of classical diphtheria, endocarditis, and pneumonia. J Bacteriol 194:3199–3215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Der Heide T, Poolman B (2002) ABC transporters: one, two or four extracytoplasmic substrate-binding sites? EMBO Rep 3:938–943

    Article  PubMed  PubMed Central  Google Scholar 

  • Viguetti SZ, Pacheco LG, Santos LS (2012) Multilocus sequence types of invasive Corynebacterium diphtheriae isolated in the Rio de Janeiro urban area, Brazil. Epidemiol Infect 140:617–620

    Article  PubMed  CAS  Google Scholar 

  • Von Zaluskowski PRA (2015) Glycogen metabolism in Corynebacterium glutamicum: effects of environmental factors and of metabolic disturbances. PhD thesis. Universität Ulm

  • Wang S, Peng J, Xu J (2011) Alignment of distantly related protein structures: algorithm, bound and implications to homology modeling. Bioinformatics 27:2537–2545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang S, Ma J, Peng J, Xu J (2013) Protein structure alignment beyond spatial proximity. Sci Rep 3:1448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, Conrad N, Dietrich EM, Disz T, Gabbard JL, Gerdes S, Henry CS, Kenyon RW, Machi D, Mao C, Nordberg EK, Olsen GJ, Murphy-Olson DE, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Vonstein V, Warren A, Xia F, Yoo H, Stevens RL (2017) Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 45:D535–D542

    Article  PubMed  CAS  Google Scholar 

  • Wauters G, Van Bosterhaut B, Janssens M, Verhaegen J (1998) Identification of Corynebacterium amycolatum and other nonlipophilic fermentative corynebacteria of human origin. J Clin Microbiol 36(5):1430–1432

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Article  PubMed  PubMed Central  Google Scholar 

  • Zakikhany K, Efstratiou A (2012) Diphtheria in Europe: current problems and new challenges. Future Microbiol 7:595–607

    Article  PubMed  Google Scholar 

  • Zasada AA (2013) Nontoxigenic highly pathogenic clone of Corynebacterium diphtheriae, Poland, 2004–2012. Emerg Infect Dis 19:1870–1872

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from FAPESB (JCB0031/2013) and CAPES (PROCAD 071/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis G. C. Pacheco.

Electronic supplementary material

ESM 1

(PDF 310 kb)

ESM 2

(PDF 478 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, A.S., Ramos, R.T., Silva, A. et al. Searching whole genome sequences for biochemical identification features of emerging and reemerging pathogenic Corynebacterium species. Funct Integr Genomics 18, 593–610 (2018). https://doi.org/10.1007/s10142-018-0610-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-018-0610-3

Keywords

Navigation