Skip to main content
Log in

Lignocellulose degradation by the isolate of Streptomyces griseorubens JSD-1

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Streptomyces griseorubens JSD-1 is an isolate that can utilize lignocellulose (straw) as its sole carbon source for growth, and these lignocellulolytic genes involved in this biotransformation are expected to be crucial. However, little is known about the genetic basis related to this process. To further investigate the lignocellulose-degrading mechanisms, genome sequencing was carried out using MiSeq platform. After obtaining its draft genome, the key lignocellulolytic genes such as multicopper oxidase, exo-1, 4-β-glucanase, endo-1,4-β-glucanase, and β-xylosidase were identified and characterized. Multiple sequence alignments were performed to find out the identities of these analyzed proteins to those of their similar species. Signal peptide cleavage sites were predicted by SignalP 4.1 to reflect the cellular localization of their mature proteins. Besides, predicted 3D structures of these proteins were modeled by Phyre2, which showed to be highly identical to the templates in the PDB database. Finally, quantitative real-time PCR revealed that expression levels of all analyzed enzymes were significantly and generally up-regulated during the whole cultivation, indicating that they all contributed to the biodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Reference

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Antai SP, Crawford DL (1981) Degradation of softwood, hardwood, and grass lignocelluloses by two Streptomyces strains. Appl Environ Microbiol 42(2):378–380

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bachmann SL, Mccarthy AJ (1989) Purification and characterization of a thermostable β-xylosidase from Thermomonospora fusca. Mircrobiol 135(2):293–299

    CAS  Google Scholar 

  • Bairoch A, Apweiler R (2000) The SWISS-PROT protein sequences database and its supplement TrEMBL in 2000. Nucleic Acids Res 28(1):45–48

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417(6885):141–147

    Article  PubMed  Google Scholar 

  • Bienfait B, Ertl P (2013) JSME: a free molecule editor in JavaScript. J Cheminform 5(24):363–371

    Google Scholar 

  • Breen A, Singleton FL (1999) Fungi in lignocellulose breakdown and biopulping. Curr Opin Biotechnol 10(3):252–258

    Article  CAS  PubMed  Google Scholar 

  • Chan AK, Wang YY, Ng KL, Fu Z, Wong WK (2012) Cloning and characterization of a novel cellobiase gene, cba3, encoding the first known β-glucosidase of glycoside hydrolase family 1 of Cellulomonas biazotea. Gene 493(1):52–61

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Knappe DR, Barlaz MA (2004) Effect of cellulose/hemicellulose and lignin on the bioavailability of toluene sorbed to waster paper. Environ Sci Technol 38(13):3731–3736

    Article  CAS  PubMed  Google Scholar 

  • Crawford DL, McCoy E (1972) Cellulases of Thermomonospora fusca and Streptomyces Thermodiastaticus. Appl Environ Microbiol 24(1):150–152

    CAS  Google Scholar 

  • Crawford DL, Pometto AL III, Crawford RL (1983) Lignin degradation by Streptomyces viridosporus, isolation and characterization of anew polymeric lignin degradation intermediate. Appl Environ Microbiol 45(3):898–904

    PubMed Central  CAS  PubMed  Google Scholar 

  • Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23(6):673–679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deng Y, Fong SS (2010) Influence of culture aeration on the cellulase activity of Thermobifida fusca. Appl Microbiol Biotechnol 85(4):965–974

    Article  CAS  PubMed  Google Scholar 

  • Enkhbaatar B, Temuujin U, Lim JH, Chi WJ, Chang YK, Hong SK (2012) Identification and characterization of a xyloglucan-specific family 74 glycosyl hydrolase from Streptomyces coelicolor A3(2). Appl Environ Microbiol 78(2):607–611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feng HW, Zhi Y, Shi WW, Mao L, Zhou P (2013) Isolation, identification and characterization of a straw degrading Streptomyces griseorubens JSD-1. Afr J Microbiol Res 7(22):2730–2735

    Google Scholar 

  • Festa G, Autore F, Fraternali F, Giardina P, Sannia G (2008) Development of new laccases by directed evolution: functional and computational analyses. Proteins 72(1):25–34

    Article  CAS  PubMed  Google Scholar 

  • George SP, Ahmad A, Rao MB (2001) A novel thermostable xylanase from Thermomonospora sp. influence of additives on thermostability. Bioresour Technol 78(3):221–224

    Article  CAS  PubMed  Google Scholar 

  • Godden B, Ball AS, Helvensteian P, McCarthy A, Penninckx MJ (1992) Towards elucidation of the lignin degradation pathway in actinomycetes. J Gen Microbiol 138(11):2441–2448

    Article  CAS  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18

    Article  CAS  PubMed  Google Scholar 

  • Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T (2010) New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotech 87(3):871–897

    Article  CAS  Google Scholar 

  • Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21(5):526–531

    Article  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38(1):D355–D360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keller FA, Hamillton TE, Nguyon QA (2003) Microbial pretreatment of biomass. Appl Biochem Biotechnol 105(1–3):27–41

    Article  PubMed  Google Scholar 

  • Kelley LA, Sternberg MJE (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4(3):363–371

    Article  CAS  PubMed  Google Scholar 

  • Lin SB, Stutzenberger FJ (1995) Purification and characterization of the major beta-1,4-endoglucanase from Thermomonospora curvata. J Appl Bacteriol 79(4):447–453

    Article  CAS  PubMed  Google Scholar 

  • Lin E, Wilson DB (1987) Regulation of β-1,4-endoglucanase synthesis in Thermomomospora fusca. Appl Environ Microbiol 53(6):1352–1357

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, Yamashita A, Hat-tori M, Horinouchi S (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190(11):4050–4060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Outten FW, Huffman DL, Hale JA, O'Halloran TV (2001) The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem 276(33):30670–30677

    Article  CAS  PubMed  Google Scholar 

  • Parr JF, Papendick RI, Hornick SB, Meyer RE (1992) Soil quality: attributes and relationships to alternative and sustainable agriculture. Am J Altern Agric 7(1–2):5–11

    Article  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) Signal 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786

    Article  CAS  PubMed  Google Scholar 

  • Saritha M, Arora A, Singh S, Nain L (2013) Streptomyces griseorubens mediated delignification of paddy straw for improved enzymatic saccharification yields. Bioresour Technol 135:12–17

    Article  CAS  PubMed  Google Scholar 

  • Skálová T, Dohnálek J, Østergaard LH, Østergaard PR, Kolenko P, Dusková J, Stepánková A, Hasek J (2009) The structure of the small laccase from Streptomyces coelicolor reveals a link between laccases and nitrite reductase. J Mol Biol 385(4):1165–1178

    Article  PubMed  Google Scholar 

  • Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG databases: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28(1):33–36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tuomela M, Vikman M, Hatakka A, Itävaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72(2):169–183

    Article  CAS  Google Scholar 

  • Wong DWS (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotech 157(2):174–209

    Article  CAS  Google Scholar 

  • Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96(18):1959–1966

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Yang Q (2010) Isolation and characterization of rice straw degrading Streptomyces griseorubens C-5. Biodegradation 21(1):107–116

    Article  CAS  PubMed  Google Scholar 

  • Zeng J, Singh D, Laskar DD, Chen S (2013) Deconstruction of native wheat straw lignin by Streptomyces viridosporus T7A. Int J Environ Sci Technol 10(1):165–174

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research work was supported by the National High Technology Research and Development Program of China (2012AA101405) and Special Fund for Agro-scientific Research in the Public Interest of China (200903056). We are also thankful for the sequencing service provided by Personal Biotechnology Co., Ltd. Shanghai, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, H., Sun, Y., Zhi, Y. et al. Lignocellulose degradation by the isolate of Streptomyces griseorubens JSD-1. Funct Integr Genomics 15, 163–173 (2015). https://doi.org/10.1007/s10142-014-0425-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-014-0425-9

Keywords

Navigation