Skip to main content
Log in

Switchgrass (Panicum virgatum L) flag leaf transcriptomes reveal molecular signatures of leaf development, senescence, and mineral dynamics

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Switchgrass flag leaves can be expected to be a source of carbon to the plant, and its senescence is likely to impact the remobilization of nutrients from the shoots to the rhizomes. However, many genes have not been assigned a function in specific stages of leaf development. Here, we characterized gene expression in flag leaves over their development. By merging changes in leaf chlorophyll and the expression of genes for chlorophyll biosynthesis and degradation, a four-phase molecular roadmap for switchgrass flag leaf ontogeny was developed. Genes associated with early leaf development were up-regulated in phase 1. Phase 2 leaves had increased expression of genes for chlorophyll biosynthesis and those needed for full leaf function. Phase 3 coincided with the most active phase for leaf C and N assimilation. Phase 4 was associated with the onset of senescence, as observed by declining leaf chlorophyll content, a significant up-regulation in transcripts coding for enzymes involved with chlorophyll degradation, and in a large number of senescence-associated genes. Of considerable interest were switchgrass NAC transcription factors with significantly higher expression in senescing flag leaves. Two of these transcription factors were closely related to a wheat NAC gene that impacts mineral remobilization. The third switchgrass NAC factor was orthologous to an Arabidopsis gene with a known role in leaf senescence. Other genes coding for nitrogen and mineral utilization, including ureide, ammonium, nitrate, and molybdenum transporters, shared expression profiles that were significantly co-regulated with the expression profiles of the three NAC transcription factors. These data provide a good starting point to link shoot senescence to the onset of dormancy in field-grown switchgrass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdallah M, Etienne P, Ourry A, Meuriot F (2011) Do initial S reserves and mineral S availability alter leaf S-N mobilization and leaf senescence in oilseed rape? Plant Sci 180:511–520

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1006/jmbi.1990.9999 S0022283680799990 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Alvarado VY, Tag A, Thomas TL (2011) A cis regulatory element in the TAPNAC promoter directs tapetal gene expression. Plant Mol Biol 75:129–139. doi:10.1007/s11103-010–9713-5

    Article  CAS  PubMed  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bartley L, Wu Y, Saathoff A, Sarath G (2013) Switchgrass genetics and breeding challenges. Wiley, New York, pp 7–31

    Google Scholar 

  • Berr A, Shafiq S, Shen WH (2011) Histone modifications in transcriptional activation during plant development. Biochim Biophys Acta 1809:567–576. doi:10.1016/j.bbagrm.2011.07.001

    Article  CAS  PubMed  Google Scholar 

  • Biswal AK, Kohli A (2013) Cereal flag leaf adaptations for grain yield under drought: knowledge status and gaps. Mol Breed 31:749–766

    Article  Google Scholar 

  • Bolouri–Moghaddam MR, Le Roy K, Xiang L, Rolland F, Van den Ende W, Van den Ende W (2010) Sugar signalling and antioxidant network connections in plant cells. FEBS J 277:2022–2037. doi:10.1111/j.1742–4658.2010.07633.x

    Article  PubMed  Google Scholar 

  • Brychkova G, Alikulov Z, Fluhr R, Sagi M (2008) A critical role for ureides in dark and senescence-induced purine remobilization is unmasked in the Atxdh1 Arabidopsis mutant. Plant J 54:496–509

    Article  CAS  PubMed  Google Scholar 

  • Chen HJ, Hou WC, Jane WN, Lin YH (2000a) Isolation and characterization of an isocitrate lyase gene from senescent leaves of sweet potato (Ipomoea batatas cv. Tainong 57). J Plant Physiol 157:669–676

    Article  CAS  Google Scholar 

  • Chen HJ, Huang CS, Huang GJ, Chow TJ, Lin YH (2013) NADPH oxidase inhibitor diphenyleneiodonium and reduced glutathione mitigate ethephon-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression in sweet potato (Ipomoea batatas). J Plant Physiol 170:1471–1483. doi:10.1016/j.jplph.2013.05.015

    Article  CAS  PubMed  Google Scholar 

  • Chen ZH, Walker RP, Acheson RM, Tecsi LI, Wingler A, Lea PJ, Leegood RC (2000b) Are isocitrate lyase and phosphoenolpyruvate carboxykinase involved in gluconeogenesis during senescence of barley leaves and cucumber cotyledons? Plant Cell Physiol 41:960–967

    Article  CAS  PubMed  Google Scholar 

  • Chollet R, Vidal J, O'Leary MH (1996) PHOSPHOENOLPYRUVATE CARBOXYLASE: a ubiquitous, highly regulated enzyme in plants annual review of plant physiology and plant molecular biology. Ann Rev Plant Physiol Plant Mol Biol 47:273–298. doi:10.1146/annurev.arplant.47.1.273

    Article  CAS  Google Scholar 

  • Cigliano RA, Sanseverino W, Cremona G, Ercolano MR, Conicella C, Consiglio FM (2013) Genome-wide analysis of histone modifiers in tomato: gaining an insight into their developmental roles. BMC Genomics 14:57

    Article  CAS  Google Scholar 

  • Davies PJ, Gan S (2012) Towards an integrated view of monocarpic plant senescence. Russ J Plant Physl 59:467–478. doi:10.1134/S102144371204005x

    Article  CAS  Google Scholar 

  • Derkx AP, Orford S, Griffiths S, Foulkes MJ, Hawkesford MJ (2012) Identification of differentially senescing mutants of wheat and impacts on yield, biomass and nitrogen partitioning. J Integr Plant Biol 54:555–566. doi:10.1111/j.1744–7909.2012.01144.x

    Article  CAS  PubMed  Google Scholar 

  • Distelfeld A et al (2012) Divergent functions of orthologous NAC transcription factors in wheat and rice. Plant Mol Biol. doi:10.1007/s11103-012–9881-6

    PubMed  Google Scholar 

  • Erley GSA, Ambebe TF, Worku M, Banziger M, Horst WJ (2010) Photosynthesis and leaf-nitrogen dynamics during leaf senescence of tropical maize cultivars in hydroponics in relation to N efficiency in the field. Plant Soil 330:313–328

    Article  Google Scholar 

  • Fontaine JX et al (2012) Characterization of a NADH-dependent glutamate dehydrogenase mutant of Arabidopsis demonstrates the key role of this enzyme in root carbon and nitrogen metabolism. Plant Cell 24:4044–4065. doi:10.1105/tpc.112.103689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Forde BG, Lea PJ (2007) Glutamate in plants: metabolism, regulation, and signalling. J Exp Bot 58:2339–2358

    Article  CAS  PubMed  Google Scholar 

  • Gallie DR (2013) The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. J Exp Bot 64:433–443. doi:10.1093/jxb/ers330

    Article  CAS  PubMed  Google Scholar 

  • Gasber A et al (2011) Identification of an Arabidopsis solute carrier critical for intracellular transport and inter-organ allocation of molybdate. Plant Biol (Stuttg) 13:710–718. doi:10.1111/j.1438–8677.2011.00448.x

    Article  CAS  Google Scholar 

  • Gepstein S et al (2003) Large-scale identification of leaf senescence-associated genes. Plant Journal 36:629–642. doi:10.1046/j.1365-313X.2003.01908.x

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. doi:10.1016/j.plaphy.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  • Goodstein DM et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186. doi:10.1093/Nar/Gkr944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gregersen PL, Holm PB (2007) Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.). Plant Biotechnol J 5:192–206. doi:10.1111/j.1467–7652.2006.00232.x

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Gan S (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46:601–612. doi:10.1111/j.1365–313X.2006.02723.x

    Article  CAS  PubMed  Google Scholar 

  • Hanson J, Smeekens S (2009) Sugar perception and signaling—an update. Curr Opin Plant Biol 12:562–567

    Article  CAS  PubMed  Google Scholar 

  • Hoch WA, Zeldin EL, McCown BH (2001) Physiological significance of anthocyanins during autumnal leaf senescence. Tree Physiol 21:1–8

    Article  CAS  PubMed  Google Scholar 

  • Hortensteiner S, Krautler B (2011) Chlorophyll breakdown in higher plants. Biochim Biophys Acta 1807:977–988. doi:10.1016/j.bbabio.2010.12.007

    Article  CAS  PubMed  Google Scholar 

  • Kajimura T, Mizuno N, Takumi S (2010) Utility of leaf senescence-associated gene homologs as developmental markers in common wheat. Plant Physiol Biochem 48:851–859. doi:10.1016/j.plaphy.2010.08.014

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–114. doi:10.1093/nar/gkr988

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kohl S et al (2012) A putative role for amino acid permeases in sink-source communication of barley tissues uncovered by RNA-seq. BMC Plant Biol 12:154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nature methods 9:357–359. doi:10.1038/nmeth.1923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lehmann T, Ratajczak L (2008) The pivotal role of glutamate dehydrogenase (GDH) in the mobilization of N and C from storage material to asparagine in germinating seeds of yellow lupine. J Plant Physiol 165:149–158

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Peng J, Wen X, Guo H (2012) Gene network analysis and functional studies of senescence-associated genes reveal novel regulators of Arabidopsis leaf senescence. J Integr Plant Biol. doi:10.1111/j.1744–7909.2012.01136.x

    PubMed Central  Google Scholar 

  • Liao Y, Smyth GK, Shi W (2013) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930. doi:10.1093/bioinformatics/btt656

    Article  PubMed  Google Scholar 

  • Lim PO, Lee IC, Kim J, Kim HJ, Ryu JS, Woo HR, Nam HG (2010) Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity. J Exp Bot 61:1419–1430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Linster CL, Clarke SG (2008) L-Ascorbate biosynthesis in higher plants: the role of VTC2. Trends Plant Sci 13:567–573. doi:10.1016/j.tplants.2008.08.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu F, Chang XJ, Ye Y, Xie WB, Wu P, Lian XM (2011a) Comprehensive sequence and whole-life-cycle expression profile analysis of the phosphate transporter gene family in rice. Mol Plant 4:1105–1122. doi:10.1093/mp/ssr058

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Zhou Y, Zhou G, Ye R, Zhao L, Li X, Lin Y (2008) Identification of early senescence-associated genes in rice flag leaves. Plant Mol Biol 67:37–55

    Article  CAS  PubMed  Google Scholar 

  • Liu X et al (2011b) LSD: a leaf senescence database. Nucleic Acids Res 39:D1103–1107. doi:10.1093/nar/gkq1169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu F, Cui X, Zhang S, Jenuwein T, Cao X (2011) Arabidopsis REF6 is a histone H3 lysine 27 demethylase. Nat Genet 43:715–719

    Article  CAS  PubMed  Google Scholar 

  • Marchi L, Degola F, Polverini E, Terce-Laforgue T, Dubois F, Hirel B, Restivo FM (2013) Glutamate dehydrogenase isoenzyme 3 (GDH3) of Arabidopsis thaliana is regulated by a combined effect of nitrogen and cytokinin. Plant Physiol Biochem 73:368–374

    Article  CAS  PubMed  Google Scholar 

  • Mendel RR, Kruse T (2012) Cell biology of molybdenum in plants and humans. Biochim Biophys Acta 1823:1568–1579. doi:10.1016/j.bbamcr.2012.02.007

    Article  CAS  PubMed  Google Scholar 

  • Mhamdi A, Mauve C, Gouia H, Saindrenan P, Hodges M, Noctor G (2010) Cytosolic NADP-dependent isocitrate dehydrogenase contributes to redox homeostasis and the regulation of pathogen responses in Arabidopsis leaves. Plant Cell Environ 33:1112–1123. doi:10.1111/j.1365-3040.2010.02133.x

    CAS  PubMed  Google Scholar 

  • Mitchell RB, Moore KJ, Moser LE, Fritz JO, Redfearn DD (1997) Predicting developmental morphology in switchgrass and big bluestem. Agron J 89:827–832

    Article  Google Scholar 

  • Moore KJ, Moser LE (1995) Quantifying developmental morphology of perennial grasses. Crop Science 35:37–43

    Article  Google Scholar 

  • Nagarajan VK, Jain A, Poling MD, Lewis AJ, Raghothama KG, Smith AP (2011) Arabidopsis Pht1;5 mobilizes phosphate between source and sink organs and Influences the interaction between phosphate homeostasis and ethylene signaling. Plant Physiol 156:1149–1163. doi:10.1104/pp.111.174805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nikitin A, Egorov S, Daraselia N, Mazo I (2003) Pathway studio—the analysis and navigation of molecular networks. Bioinformatics 19:2155–2157

    Article  CAS  PubMed  Google Scholar 

  • Palmer NA et al (2012) Next-generation sequencing of crown and rhizome transcriptome from an upland, tetraploid switchgrass. Bioenergy Research 5:649–661

    Article  CAS  Google Scholar 

  • Palmer NA et al (2014) Global changes in mineral transporters in tetraploid switchgrasses (Panicum virgatum L.). Frontiers in plant science 4:549. doi:10.3389/fpls.2013.00549

    Article  PubMed Central  PubMed  Google Scholar 

  • Patwardhan PR, Satrio JA, Brown RC, Shanks BH (2010) Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour Technol 101:4646–4655. doi:10.1016/j.biortech.2010.01.112

    Article  CAS  PubMed  Google Scholar 

  • Perez-Rodriguez P, Riano-Pachon DM, Correa LG, Rensing SA, Kersten B, Mueller-Roeber B (2010) PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res 38:D822–827. doi:10.1093/nar/gkp805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous-equations for assaying chlorophyll-a and chlorophyll-b extracted with 4 different solvents—verification of the concentration of chlorophyll standards by atomic-absorption spectroscopy. Biochimica Et Biophysica Acta 975:384–394

    Article  CAS  Google Scholar 

  • Pourtau N, Jennings R, Pelzer E, Pallas J, Wingler A (2006) Effect of sugar-induced senescence on gene expression and implications for the regulation of senescence in Arabidopsis. Planta 224:556–568

    Article  CAS  PubMed  Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369–381

    Article  CAS  PubMed  Google Scholar 

  • Rauf M et al (2013) ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription. EMBO Reports 14:382–388. doi:10.1038/embor.2013.24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reinbothe C et al (2010) Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction. Trends in Plant Science 15:614–624

    Article  CAS  PubMed  Google Scholar 

  • Reinbothe C, Springer A, Samol I, Reinbothe S (2009) Plant oxylipins: role of jasmonic acid during programmed cell death, defence and leaf senescence. Febs J 276:4666–4681

    Article  CAS  PubMed  Google Scholar 

  • Ricachenevsky FK, Menguer PK, Sperotto RA (2013) kNACking on heaven's door: how important are NAC transcription factors for leaf senescence and Fe/Zn remobilization to seeds? Frontiers in Plant Science 4:226. doi:10.3389/fpls.2013.00226

    PubMed Central  PubMed  Google Scholar 

  • Riefler M, Novak O, Strnad M, Schmulling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sarath G, Baird LM, Mitchell RB (2014) Senescence, dormancy and tillering in perennial C4 grasses. Plant Sci 217–218:140–151. doi: 10.1016/j.plantsci.2013.12.012

  • Sekhon RS, Childs KL, Santoro N, Foster CE, Buell CR, de Leon N, Kaeppler SM (2012) Transcriptional and metabolic analysis of senescence induced by preventing pollination in maize. Plant physiology 159:1730–1744. doi:10.1104/pp.112.199224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sinclair SA, Kramer U (2012) The zinc homeostasis network of land plants. Biochim Biophys Acta 1823:1553–1567. doi:10.1016/j.bbamcr.2012.05.016

    Article  CAS  PubMed  Google Scholar 

  • Smykowski A, Zimmermann P, Zentgraf U (2010) G-Box binding factor1 reduces CATALASE2 expression and regulates the onset of leaf senescence in Arabidopsis. Plant Physiol 153:1321–1331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Srivalli S, Khanna-Chopra R (2009) Delayed wheat flag leaf senescence due to removal of spikelets is associated with increased activities of leaf antioxidant enzymes, reduced glutathione/oxidized glutathione ratio and oxidative damage to mitochondrial proteins. Plant Physiol Biochem 47:663–670

    Article  CAS  PubMed  Google Scholar 

  • Team RC (2011) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2012 Open access available at: http://cran r-project org

  • Thomas H (2013) Senescence, ageing and death of the whole plant. New Phytol 197:696–711

    Article  PubMed  Google Scholar 

  • Thomas H, Thomas HM, Ougham H (2000) Annuality, perenniality and cell death. J Exp Bot 51:1781–1788

    Article  CAS  PubMed  Google Scholar 

  • Troncoso-Ponce MA, Cao X, Yang Z, Ohlrogge JB (2013) Lipid turnover during senescence. Plant Sci 205–206:13–19. doi:10.1016/j.plantsci.2013.01.004

  • Vogel KP, Mitchell KB (2008) Heterosis in switchgrass: biomass yield in swards. Crop Science 48:2159–2164. doi:10.2135/cropsci2008.02.0117

    Article  Google Scholar 

  • Vogel KP, Sarath G, Saathoff AJ, Mitchell RB (2011) Switchgrass Rsc. Energy Environ 3:341–380

    CAS  Google Scholar 

  • Wang JW, Czech B, Weigel D (2009) miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738–749

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Nishimura MT, Zhao T, Tang D (2011) ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant J 68:74–87

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wu WH (2013) Potassium transport and signaling in higher plants. Annu Rev Plant Biol. doi:10.1146/annurev-arplant-050312-120153

    PubMed  Google Scholar 

  • Waters BM, Uauy C, Dubcovsky J, Grusak MA (2009) Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. J Exp Bot 60:4263–4274

    Article  CAS  PubMed  Google Scholar 

  • Wayman S, Bowden R, Mitchell R (2013) Seasonal changes in shoot and root nitrogen distribution in switchgrass (Panicum virgatum). Bioenergy Research 7(1):243–252. doi:10.1007/s12155-013-9365-9

    Article  Google Scholar 

  • Wilson DM, Dalluge DL, Rover M, Heaton EA, Brown RC (2013) Crop management impacts biofuel quality: influence of switchgrass harvest time on yield, nitrogen and ash of fast pyrolysis products. Bioenergy Research 6:103–113

    Article  CAS  Google Scholar 

  • Wu Y et al (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19:1279–1290

    Article  CAS  PubMed  Google Scholar 

  • Xiang L, Li Y, Rolland F, Van den Ende W (2011) Neutral invertase, hexokinase and mitochondrial ROS homeostasis: emerging links between sugar metabolism, sugar signaling and ascorbate synthesis. Plant Signal Behav 6:1567–1573

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang J, Worley E, Wang M, Lahner B, Salt D, Saha M, Udvardi M (2009) Natural variation for nutrient use and remobilization efficiencies in switchgrass. Bioenergy Research 2:257–266

    Article  Google Scholar 

  • Yang W, Jiang D, Jiang J, He Y (2010) A plant-specific histone H3 lysine 4 demethylase represses the floral transition in Arabidopsis. Plant J 62:663–673

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Ohlrogge JB (2009) Turnover of fatty acids during natural senescence of Arabidopsis, Brachypodium, and switchgrass and in Arabidopsis beta-oxidation mutants. Plant Physiol 150:1981–1989

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoo BC et al (2004) A systemic small RNA signaling system in plants. Plant Cell 16:1979–2000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng ZL (2009) Carbon and nitrogen nutrient balance signaling in plants. Plant Signal Behav 4:584–591

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. James D. Eudy and Alok Dhar for sample preparation and analysis on the Illumina Hi-Seq 2,000 instrument. We thank Dr. Aaron J. Saathoff for help with leaf collection. This work was supported in part by the Office of Science (BER), US Department of Energy Grant Number DE-AI02-09ER64829, USDA-NIFA Grant Number 2011-67009-30096, and by the USDA-ARS CRIS project 5440-21000-030-00D. The US Department of Agriculture, Agricultural Research Service, is an equal opportunity/affirmative action employer and all agency services are available without discrimination. Mention of commercial products and organizations in this manuscript is solely to provide specific information. It does not constitute endorsement by USDA-ARS over other products and organizations not mentioned.

The University of Nebraska DNA Sequencing Core receives partial support from the NCRR (1S10RR027754-01, 5P20RR016469, RR018788-08) and the National Institute for General Medical Science (NIGMS) (8P20GM103427, GM103471-09). This publication’s contents are the sole responsibility of the authors and do not necessarily represent the official views of the NIH or NIGMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Sarath.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 0.99 mb)

ESM 2

(XLSX 2.61 mb)

ESM 3

(XLSX 2.62 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palmer, N.A., Donze-Reiner, T., Horvath, D. et al. Switchgrass (Panicum virgatum L) flag leaf transcriptomes reveal molecular signatures of leaf development, senescence, and mineral dynamics. Funct Integr Genomics 15, 1–16 (2015). https://doi.org/10.1007/s10142-014-0393-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-014-0393-0

Keywords

Navigation