Skip to main content
Log in

Identification of glutathione S-transferase genes responding to pathogen infestation in Populus tomentosa

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Stem blister canker, caused by Botryosphaeria dothidea, is becoming the most serious disease of poplar in China. The molecular basis of the poplar in response to stem blister canker is not well understood. To reveal the global transcriptional changes of poplar to infection by B. dothidea, Solexa paired-end sequencing of complementary DNAs (cDNAs) from control (NB) and pathogen-treated samples (WB) was performed, resulting in a total of 339,283 transcripts and 183,881 unigenes. A total of 206,586 transcripts were differentially expressed in response to pathogen stress (false discovery rate ≤0.05 and an absolute value of log2Ratio (NB/WB) ≥1). In enrichment analysis, energy metabolism and redox reaction-related macromolecules were accumulated significantly in Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyses, indicating components of dynamic defense against the fungus. A total of 852 transcripts (575 upregulated and 277 downregulated transcripts) potentially involved in plant–pathogen interaction were also differentially regulated, including genes encoding proteins linked to signal transduction (putative leucine-rich repeat (LRR) protein kinases and calcium-binding proteins), defense (pathogenesis-related protein 1), and cofactors (jasmonate-ZIM-domain-containing proteins and heat shock proteins). Moreover, transcripts encoding glutathione S-transferase (GST) were accumulated to high levels, revealing key genes and proteins potentially related to pathogen resistance. Poplar RNA sequence data were validated by quantitative real-time PCR (RT-qPCR), which revealed a highly reliability of the transcriptomic profiling data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adhikari BN, Savory EA, Vaillancourt B, Childs KL, Hamilton JP, Day B, Buell CR (2012) Expression profiling of Cucumis sativus in response to infection by Pseudoperonospora cubensis. PLoS One 7(4):e34954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alexander D, Goodman RM, Gut-Rella M, Glascock C, Weymann K, Friedrich L, Maddox D, Ahl-Goy P, Luntz T, Ward E (1993) Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1A. Proc Natl Acad Sci U S A 90(15):7327–7331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu W-L, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415(6875):977–983

    Article  CAS  PubMed  Google Scholar 

  • Azaiez A, Boyle B, Levée V, Séguin A (2009) Transcriptome profiling in hybrid poplar following interactions with Melampsora rust fungi. Mol Plant Microbe Interact 22(2):190–200

    CAS  PubMed  Google Scholar 

  • Babashpour S, Aminzadeh S, Farrokhi N, Karkhane A, Haghbeen K (2012) Characterization of a chitinase (Chit62) from Serratia marcescens B4A and its efficacy as a bioshield against plant fungal pathogens. Biochem Genet 50(9–10):722–735

    Article  CAS  PubMed  Google Scholar 

  • Bai S, Dong C, Li B, Dai H (2012) A PR-4 gene identified from Malusdomestica is involved in the defense responses against Botryosphaeria dothidea. Plant Physiol Biochem 62:23–32

    PubMed  Google Scholar 

  • Brown-Rytlewski DE, McManus PS (2000) Virulence of Botryosphaeria dothidea and Botryosphaeria obtusa on apple and management of stem cankers with fungicides. Plant Dis 84(9):1031–1037

    Article  Google Scholar 

  • Ceserani T, Trofka A, Gandotra N, Nelson T (2009) VH1/BRL2 receptor-like kinase interacts with vascular-specific adaptor proteins VIT and VIK to influence leaf venation. Plant J 57(6):1000–1014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chain F, Côté-Beaulieu C, Belzile F, Menzies J, Bélanger R (2009) A comprehensive transcriptomic analysis of the effect of silicon on wheat plants under control and pathogen stress conditions. Mol Plant Microbe Interact 22(11):1323–1330

    CAS  PubMed  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11(2):113–116

    Article  CAS  Google Scholar 

  • Chen J-H, Jiang H-W, Hsieh E-J, Chen H-Y, Chien C-T, Hsieh H-L, Lin T-P (2012a) Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol 158(1):340–351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen L, Ren Y, Zhang Y, Xu J, Zhang Z, Wang Y (2012b) Genome-wide profiling of novel and conserved Populus microRNAs involved in pathogen stress response by deep sequencing. Planta 235(5):873–883

    Article  CAS  PubMed  Google Scholar 

  • Dang Z-h, L-l Z, Wang J, Gao Z, S-b W, Qi Z, Y-c W (2013) Transcriptomic profiling of the salt-stress response in the wild recretohalophyte Reaumuria trigyna. BMC Genomics 14(1):29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dittrich H, Kutchan TM (1991) Molecular cloning, expression, and induction of berberine bridge enzyme, an enzyme essential to the formation of benzophenanthridine alkaloids in the response of plants to pathogenic attack. Proc Natl Acad Sci U S A 88(22):9969–9973

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dixon DP, Edwards R (2009) Selective binding of glutathione conjugates of fatty acid derivatives by plant glutathione transferases. J Biol Chem 284(32):21249–21256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dixon DP, Hawkins T, Hussey PJ, Edwards R (2009) Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. J Exp Bot 60(4):1207–1218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duplessis S, Major I, Martin F, Séguin A (2009) Poplar and pathogen interactions: insights from Populus genome-wide analyses of resistance and defense gene families and gene expression profiling. Crit Rev Plant Sci 28(5):309–334

    Article  CAS  Google Scholar 

  • Eulgem T (2006) Dissecting the WRKY web of plant defense regulators. Plos Pathog 2(11):e126

    Article  PubMed Central  PubMed  Google Scholar 

  • Fode B, Siemsen T, Thurow C, Weigel R, Gatz C (2008) The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress-inducible promoters. Plant Cell 20(11):3122–3135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fu B, He S (2012) Transcriptome analysis of silver carp (Hypophthalmichthys molitrix) by paired-end RNA sequencing. DNA Res 19(2):131–142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garg R, Patel RK, Tyagi AK, Jain M (2011) De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res 18(1):53–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Giraud E, Ivanova A, Gordon CS, Whelan J, Considine MJ (2012) Sulphur dioxide evokes a large scale reprogramming of the grape berry transcriptome associated with oxidative signalling and biotic defence responses. Plant Cell Environ 35(2):405–417

    Article  CAS  PubMed  Google Scholar 

  • Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36(10):3420–3435

    Article  PubMed Central  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harding SA, Roberts DM (1998) Incompatible pathogen infection results in enhanced reactive oxygen and cell death responses in transgenic tobacco expressing a hyperactive mutant calmodulin. Planta 206(2):253–258

    Article  CAS  Google Scholar 

  • Harding SA, Oh S-H, Roberts DM (1997) Transgenic tobacco expressing a foreign calmodulin gene shows an enhanced production of active oxygen species. EMBO J 16(6):1137–1144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He P, Shan L, Sheen J (2007) Elicitation and suppression of microbe-associated molecular pattern‐triggered immunity in plant–microbe interactions. Cell Microbiol 9(6):1385–1396

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Ghanashyam C, Bhattacharjee A (2010) Comprehensive expression analysis suggests overlapping and specific roles of rice glutathione S-transferase genes during development and stress responses. BMC Genomics 11(1):73

    Article  PubMed Central  PubMed  Google Scholar 

  • Jung HW, Kim W, Hwang BK (2003) Three pathogen-inducible genes encoding lipid transfer protein from pepper are differentially activated by pathogens, abiotic, and environmental stresses. Plant Cell Environ 26(6):915–928

    Article  CAS  PubMed  Google Scholar 

  • Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci U S A 103(29):11086–11091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knoth C, Ringler J, Dangl JL, Eulgem T (2007) Arabidopsis WRKY70 is required for full RPP4-mediated disease resistance and basal defense against Hyaloperonospora parasitica. Mol Plant Microbe Interact 20(2):120–128

    CAS  PubMed  Google Scholar 

  • Lan T, Wang X-R, Zeng Q-Y (2013) Structural and functional evolution of positively selected sites in pine glutathione S-transferase enzyme family. J Biol Chem 288(34):24441–24451

    Article  CAS  PubMed  Google Scholar 

  • Latinović J, Mazzaglia A, Latinović N, Ivanović M, Gleason ML (2013) Resistance of olive cultivars to Botryosphaeria dothidea, causal agent of olive fruit rot in Montenegro. Crop Prot 48:35–40

    Article  Google Scholar 

  • Liang H, Maynard CA, Allen RD, Powell WA (2001) Increased Septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene. Plant Mol Biol 45(6):619–629

    Article  CAS  PubMed  Google Scholar 

  • Lu R, Malcuit I, Moffett P, Ruiz MT, Peart J, Wu A-J, Rathjen JP, Bendahmane A, Day L, Baulcombe DC (2003) High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J 22(21):5690–5699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martin F, Gianinazzi‐Pearson V, Hijri M, Lammers P, Requena N, Sanders I, Shachar-Hill Y, Shapiro H, Tuskan G, Young J (2008) The long hard road to a completed Glomus intraradices genome. New Phytol 180(4):747–750

    Article  CAS  PubMed  Google Scholar 

  • Martinelli F, Reagan RL, Uratsu SL, Phu ML, Albrecht U, Zhao W, Davis CE, Bowman KD, Dandekar AM (2013) Gene regulatory networks elucidating Huanglongbing disease mechanisms. PLoS One 8(9):e74256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mizrachi E, Hefer CA, Ranik M, Joubert F, Myburg AA (2010) De novo assembled expressed gene catalog of a fast-growing Eucalyptus tree produced by Illumina mRNA-Seq. BMC Genomics 11(1):681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628

    Article  CAS  PubMed  Google Scholar 

  • Niderman T, Genetet I, Bruyere T, Gees R, Stintzi A, Legrand M, Fritig B, Mosinger E (1995) Pathogenesis-related PR-1 proteins are antifungal (isolation and characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans). Plant Physiol 108(1):17–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nie Q, Fang M, Jia X, Zhang W, Zhou X, He X, Zhang X (2011) Analysis of muscle and ovary transcriptome of Sus scrofa: assembly, annotation and marker discovery. DNA Res 18(5):343–351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Passos MA, de Cruz VO, Emediato FL, de Teixeira CC, Azevedo VCR, Brasileiro AC, Amorim EP, Ferreira CF, Martins NF, Togawa RC (2013) Analysis of the leaf transcriptome of Musa acuminata during interaction with Mycosphaerella musicola: gene assembly, annotation and marker development. BMC Genomics 14(1):78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petre B, Morin E, Tisserant E, Hacquard S, Da Silva C, Poulain J, Delaruelle C, Martin F, Rouhier N, Kohler A (2012) RNA-Seq of Early-Infected Poplar Leaves by the Rust Pathogen Melampsora larici-populina Uncovers PtSultr3; 5, a Fungal-Induced Host Sulfate Transporter. Plos One 7(8):e44408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poovaiah B, Du L, Wang H, Yang T (2013) Recent advances in calcium/calmodulin-mediated signaling with an emphasis on plant-microbe interactions. Plant Physiol 163(2):531–542

    Article  CAS  PubMed  Google Scholar 

  • Rietz S, Bernsdorff FE, Cai D (2012) Members of the germin-like protein family in Brassica napus are candidates for the initiation of an oxidative burst that impedes pathogenesis of Sclerotinia sclerotiorum. J Exp Bot 63(15):5507–5519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts DM, Harmon AC (1992) Calcium-modulated proteins: targets of intracellular calcium signals in higher plants. Annu Rev Plant Biol 43(1):375–414

    Article  CAS  Google Scholar 

  • Saijo Y, Tintor N, Lu X, Rauf P, Pajerowska-Mukhtar K, Häweker H, Dong X, Robatzek S, Schulze-Lefert P (2009) Receptor quality control in the endoplasmic reticulum for plant innate immunity. EMBO J 28(21):3439–3449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salem M, Rexroad C, Wang J, Thorgaard G, Yao J (2010) Characterization of the rainbow trout transcriptome using Sanger and 454-pyrosequencing approaches. BMC Genomics 11(1):564

    Article  PubMed Central  PubMed  Google Scholar 

  • Santamaria M, Thomson CJ, Read ND, Loake GJ (2001) The promoter of a basic PR1-like gene, AtPRB1, from Arabidopsis establishes an organ-specific expression pattern and responsiveness to ethylene and methyl jasmonate. Plant Mol Biol 47(5):641–652

    Article  CAS  PubMed  Google Scholar 

  • Schaller A, Oecking C (1999) Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants. Plant Cell 11(2):263–272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schlumbaum A, Mauch F, Vögeli U, Boller T (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324:365–367

    Article  CAS  Google Scholar 

  • Shimaoka T, Ohnishi M, Sazuka T, Mitsuhashi N, Hara-Nishimura I, Shimazaki K-I, Maeshima M, Yokota A, Tomizawa K-I, Mimura T (2004) Isolation of intact vacuoles and proteomic analysis of tonoplast from suspension-cultured cells of Arabidopsis thaliana. Plant Cell Physiol 45(6):672–683

    CAS  PubMed  Google Scholar 

  • Srivastava A, Rogers WL, Breton CM, Cai L, Malmberg RL (2011) Transcriptome analysis of Sarracenia, an insectivorous plant. DNA Res 18(4):253–261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27(9):522–530

    Article  CAS  PubMed  Google Scholar 

  • Vijayan P, Shockey J, Lévesque CA, Cook RJ (1998) A role for jasmonate in pathogen defense of Arabidopsis. Proc Natl Acad Sci U S A 95(12):7209–7214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wan J, Pentecost G (2013) Potential Application of Chitin Signaling in Engineering Broad-Spectrum Disease Resistance to Fungal and Bacterial Pathogens in Plants. Adv Crop Sci Tech 1:e103

    Google Scholar 

  • Wang L, Song X, Gu L, Li X, Cao S, Chu C, Cui X, Chen X, Cao X (2013a) NOT2 proteins promote polymerase II–dependent transcription and interact with multiple microRNA biogenesis factors in arabidopsis. Plant Cell 25(2):715–727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X-C, Zhao Q-Y, Ma C-L, Zhang Z-H, Cao H-L, Kong Y-M, Yue C, Hao X-Y, Chen L, Ma J-Q (2013b) Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics 14(1):415

    Article  PubMed Central  PubMed  Google Scholar 

  • Weaver D (1974) A gummosis disease of peach trees caused by Botryosphaeria dothidea. Phytopathology 64(12):1429–1432

    Article  Google Scholar 

  • Winkler A, Hartner F, Kutchan TM, Glieder A, Macheroux P (2006) Biochemical evidence that berberine bridge enzyme belongs to a novel family of flavoproteins containing a bi-covalently attached FAD cofactor. J Biol Chem 281(30):21276–21285

    Article  CAS  PubMed  Google Scholar 

  • Xiang Y, Hua X, Zhao J (1979) The identification on the causal organism of the blister-type canker of poplar. Acta Microbiol Sin 19:57–63

    Google Scholar 

  • Zhao J-P, Jiang X-L, Zhang B-Y, Su X-H (2012) Involvement of microRNA-mediated gene expression regulation in the pathological development of stem canker disease in Populus trichocarpa. Plos One 7(9):e44968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou Y, Liu H, Zhao J, Tan M, Sui P, Wang J, Zhou L (2008) Poplar stem blister canker and its control strategies by plant extracts. World J Microbiol Biotechnol 24(8):1579–1584

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science & Technology Pillar Programe (2012BAD01B0302), National High Technology Research and Development Program (2013AA102703), and the Changjiang Scholars and Innovative Research Team Program (IRT13047) of China. We sincerely thank Professor Wei He at the Beijing Forestry University for providing Botryosphaeria dothidea strain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinmin An.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

List of DETs highly expressed following infection. Putative functions were determined by BLASTing against the Nr (non-redundant) and Swiss-prot databases using an E-value of 1.00E-5. (XLS 189 kb)

Table S2

Summary and functional annotation of DETs identified related to plant–pathogen interaction. DETs listed in this table were identified by their functional annotations. (XLS 536 kb)

Table S3

Annotation and categories of transcription factors. Transcripts were identified as transcription factors by BLASTing against the TAIR database (http://www.arabidopsis.org/index.jsp), which contains a list of 5597 TFs, classified into 50 TF families, their names, AGI accession numbers, and putative functions. TFs highly expressed following infection are listed with their fold-changes, AGI accession numbers, and putative functions. (XLS 659 kb)

Table S4

Sequences of validated genes and primers used for RT-qPCR verification. (XLS 68 kb)

Figure S1

Identification of DETs between the NB and WB libraries. (A) Venn-diagram of expressed poplar transcripts. The upper circle represents for WB library (325,873 transcripts), and the lower circle represents for NB library (276,266 transcripts). The hatched area represents all DETs (206,586 transcripts). 130,159 DETs and 132,697 unchanged transcripts were expressed in both libraries (section c and section b, respectively). 63,017 DETs were expressed only in the WB library (section a), and 13,410 DETs were expressed only in the NB library (section d). (B) Ln-transformed expression levels of poplar transcripts. DETs were determined using a threshold of FDR ≤ 0.05 and an absolute value of log2Ratio (NB/WB) ≥ 1. DETs are colored green (downregulated), red (upregulated), or blue (not DETs). The x-axis represents the ratio of log10 (NB RPKM), and the y-axis represents the ratio of log10 (WB RPKM). (GIF 45 kb)

High resolution image (EPS 28240 kb)

Figure S2

Validation of RNA-Seq results by RT-qPCR. The x- and y-axis indicate the ratio of log2 fold change in RT-qPCR and RNA-Seq. The figure shows 18 differentially expressed genes, each of which is represented by two treatments (uninfected and infected with B. dothidea). RT-qPCR data represent the mean values of three independent replicates. (GIF 2 kb)

High resolution image (EPS 10756 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, W., Ji, L., Wang, J. et al. Identification of glutathione S-transferase genes responding to pathogen infestation in Populus tomentosa . Funct Integr Genomics 14, 517–529 (2014). https://doi.org/10.1007/s10142-014-0379-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-014-0379-y

Keywords

Navigation