Skip to main content
Log in

Conserved synteny-based anchoring of the barley genome physical map

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Gene order is largely collinear in the small-grained cereals, a feature which has proved helpful in both marker development and positional cloning. The accuracy of a virtual gene order map (“genome zipper”) for barley (Hordeum vulgare), developed by combining a genetic map of this species with a large number of gene locations obtained from the maps constructed in other grass species, was evaluated here both at the genome-wide level and at the fine scale in a representative segment of the genome. Comparing the whole genome “genome zipper” maps with a genetic map developed by using transcript-derived markers, yielded an accuracy of >94 %. The fine-scale comparison involved a 14 cM segment of chromosome arm 2HL. One hundred twenty-eight genes of the “genome zipper” interval were analysed. Over 95 % (45/47) of the polymorphic markers were genetically mapped and allocated to the expected region of 2HL, following the predicted order. A further 80 of the 128 genes were assigned to the correct chromosome arm 2HL by analysis of wheat-barley addition lines. All 128 gene-based markers developed were used to probe a barley bacterial artificial chromosome (BAC) library, delivering 26 BAC contigs from which all except two were anchored to the targeted zipper interval. The results demonstrate that the gene order predicted by the “genome zipper” is remarkably accurate and that the “genome zipper” represents a highly efficient informational resource for the systematic identification of gene-based markers and subsequent physical map anchoring of the barley genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bennett CD, Campbell MN, Cook CJ, Eyre DJ, Nay LM, Nielsen DR, Rasmussen RP, Bernard PS (2003) The Light Typer (TM): high-throughput genotyping using fluorescent melting curve analysis. Biotechniques 34(1288–92):1294–1295

    Google Scholar 

  • Bolot S, Abrouk M, Masood-Quraishi U, Stein N, Messing J, Feuillet C, Salse J (2009) The 'inner circle' of the cereal genomes. Curr Opin Plant Biol 12:119–125. doi:10.1016/j.pbi.2008.10.011

    Article  PubMed  CAS  Google Scholar 

  • Bossolini E, Wicker T, Knobel PA, Keller B (2007) Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Plant J 49:704–717. doi:10.1111/j.1365-313X.2006.02991.x

    Article  PubMed  CAS  Google Scholar 

  • Close TJ, Bhat PR, Lonardi S, Wu YH, Rostoks N, Ramsay L, Druka A, Stein N, Svensson JT, Wanamaker S, Bozdag S, Roose ML, Moscou MJ, Chao SAM, Varshney RK, Szucs P, Sato K, Hayes PM, Matthews DE, Kleinhofs A, Muehlbauer GJ, DeYoung J, Marshall DF, Madishetty K, Fenton RD, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582. doi:10.1186/1471-2164-10-582

    Article  PubMed  Google Scholar 

  • Cordoba JM, Chavarro C, Schlueter JA, Jackson SA, Blair MW (2010) Integration of physical and genetic maps of common bean through BAC-derived microsatellite markers. BMC Genomics 11:436

    Article  PubMed  Google Scholar 

  • Doligez A, Adam-Blondon AF, Cipriani G, Laucou V, Merdinoglu D, Meredith CP, Riaz S, Roux C, This P, Di Gaspero G (2006) An integrated SSR map of grapevine based on five mapping populations. Theor Appl Genet 113:369–382. doi:10.1007/s00122-006-0295-1

    Article  PubMed  CAS  Google Scholar 

  • Faris JD, Zhang ZC, Fellers JP, Gill BS (2008) Micro-colinearity between rice, Brachypodium, and Triticum monococcum at the wheat domestication locus. Funct Integr Genomics 8:149–164. doi:10.1007/s10142-008-0073-z

    Article  PubMed  CAS  Google Scholar 

  • Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457–1467. doi:10.1105/Tpc.010479

    Article  PubMed  CAS  Google Scholar 

  • Gaut BS (2002) Evolutionary dynamics of grass genomes. New Phytol 154:15–28

    Article  CAS  Google Scholar 

  • Gottwald S, Stein N, Borner A, Sasaki T, Graner A (2004) The gibberellic-acid insensitive dwarfing gene sdw3 of barley is located on chromosome 2HS in a region that shows high colinearity with rice chromosome 7L. Mol Genet Genomics 271:426–436. doi:10.1007/s00438-004-0993-9

    Article  PubMed  CAS  Google Scholar 

  • Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an Rflp map of barley. Theor Appl Genet 83:250–256

    Article  Google Scholar 

  • Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752. doi:10.1038/Nature04434

    Article  PubMed  CAS  Google Scholar 

  • Gu YQ, Ma YQ, Huo NX, Vogel JP, You FM, Lazo GR, Nelson WM, Soderlund C, Dvorak J, Anderson OD, Luo MC (2009) A BAC-based physical map of Brachypodium distachyon and its comparative analysis with rice and wheat. BMC Genomics 10:496. doi:10.1186/1471-2164-10-496

    Article  PubMed  Google Scholar 

  • Herrmann MG, Durtschi JD, Wittwer CT, Voelkerding KV (2007) Expanded instrument comparison of amplicon DNA melting analysis for mutation scanning and genotyping. Clin Chem 53:1544–1548. doi:10.1373/clinchem.2007.088120

    Article  PubMed  CAS  Google Scholar 

  • Islam AKMR, Shepherd KW (2000) Isolation of a fertile wheat–barley addition line carrying the entire barley chromosome 1H. Euphytica 111:145–149

    Article  Google Scholar 

  • Islam AKMR, Shepherd KW, Sparrow DHB (1981) Isolation and characterization of euplasmic wheat–barley chromosome addition lines. Heredity 46:161

    Article  Google Scholar 

  • Keller B, Feuillet C (2000) Colinearity and gene density in grass genomes. Trends Plant Sci 5:246–251

    Article  PubMed  CAS  Google Scholar 

  • Kosambi D (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Krattinger S, Wicker T, Keller B (2009) Map-based cloning of genes in Triticeae (wheat and barley). In: Genetics and genomics of the Triticeae. Muehlbauer GJ, Feuillet C (eds) Springer, New York, USA, pp. 337–357

  • Liewlaksaneeyanawin C, Zhuang J, Tang M, Farzaneh N, Lueng GL, Cullis C, Findlay S, Ritland CE, Bohlmann J, Ritland K et al (2009) Identification of COS markers in the Pinaceae. Tree Genetics & Genomes 5:247–255. doi:10.1007/s11295-008-0189-2

    Article  Google Scholar 

  • Luo ZW, Potokina E, Druka A, Wise R, Waugh R, Kearsey MJ (2007) SFP genotyping from affymetrix arrays is robust but largely detects cis-acting expression regulators. Genetics 176:789–800. doi:10.1534/genetics.106.067843

    Article  PubMed  CAS  Google Scholar 

  • Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-van Ginkel M, King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73

    Article  CAS  Google Scholar 

  • Manly KF, Cudmore RH, Meer JM (2001) Map manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  • Mayer KFX, Taudien S, Martis M, Simkova H, Suchankova P, Gundlach H, Wicker T, Petzold A, Felder M, Steuernagel B, Scholz U, Graner A, Platzer M, Dolezel J, Stein N (2009) Gene content and virtual gene order of barley chromosome 1H. Plant Physiol 151:496–505. doi:10.1104/pp.109.142612

    Article  PubMed  CAS  Google Scholar 

  • Mayer KFX, Martis M, Hedley PE, Simkova H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubalakova M, Suchankova P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Dolezel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263. doi:10.1105/tpc.110.082537

    Article  PubMed  CAS  Google Scholar 

  • Moore G, Devos KM, Wang Z, Gale MD (1995) Cereal genome evolution—grasses, line up and form a circle. Curr Biol 5:737–739. doi:10.1016/S0960-9822(95)00148-5

    Article  PubMed  CAS  Google Scholar 

  • Neff MM, Neff JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14:387–392

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Burow MD, Draye X, Elsik CG, Jiang CX, Katsar CS, Lan TH, Lin YR, Ming RG, Wright RJ (2000) Comparative genomics of plant chromosomes. Plant Cell 12:1523–1539

    PubMed  CAS  Google Scholar 

  • Perovic D, Stein N, Zhang H, Drescher A, Prasad M, Kota R, Kopahnke D, Graner A (2004) An integrated approach for comparative mapping in rice and barley with special reference to the Rph16 resistance locus. Funct Integr Genomics 4:74–83. doi:10.1007/s10142-003-0100-z

    Article  PubMed  CAS  Google Scholar 

  • Potokina E, Druka A, Luo ZW, Wise R, Waugh R, Kearsey M (2008) Gene expression quantitative trait locus analysis of 16,000 barley genes reveals a complex pattern of genome-wide transcriptional regulation. Plant J 53:90–101. doi:10.1111/j.1365-313X.2007.03315.x

    Article  PubMed  CAS  Google Scholar 

  • Pourkheirandish M, Wicker T, Stein N, Fujimura T, Komatsuda T (2007) Analysis of the barley chromosome 2 region containing the six-rowed spike gene vrs1 reveals a breakdown of rice–barley micro collinearity by a transposition. Theor Appl Genet 114:1357–1365. doi:10.1007/s00122-007-0522-4

    Article  PubMed  CAS  Google Scholar 

  • Quraishi UM, Abrouk M, Bolot S, Pont C, Throude M, Guilhot N, Confolent C, Bortolini F, Praud S, Murigneux A, Charmet G, Salse J (2009) Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Funct Integr Genomics 9:473–484. doi:10.1007/s10142-009-0129-8

    Article  PubMed  CAS  Google Scholar 

  • Schulte D, Ariyadasa R, Shi BJ, Fleury D, Saski C, Atkins M, DeJong P, Wu CC, Graner A, Langridge P, Stein N (2011) BAC library resources for map-based cloning and physical map construction in barley (Hordeum vulgare L.). BMC Genomics 12:247. doi:10.1186/1471-2164-12-247

    Article  PubMed  CAS  Google Scholar 

  • Schulte D, Close TJ, Graner A, Langridge P, Matsumoto T, Muehlbauer G, Sato K, Schulman AH, Waugh R, Wise RP, Stein N (2009) The International Barley Sequencing Consortium—at the threshold of efficient access to the barley genome. Plant Physiol 149:142–147. doi:10.1104/pp.108.128967

    Article  PubMed  CAS  Google Scholar 

  • Spearman C (2010) The proof and measurement of association between two things. Int J Epidemiol 39:1137–1150. doi:10.1093/Ije/Dyq191

    Article  PubMed  CAS  Google Scholar 

  • Stein N (2007) Triticeae genomics: advances in sequence analysis of large genome cereal crops. Chromosom Res 15:21–31. doi:10.1007/s10577-006-1107-9

    Article  CAS  Google Scholar 

  • Suchankova P, Kubalakova M, Kovarova P, Bartos J, Cihalikova J, Molnar-Lang M, Endo TR, Dolezel J (2006) Dissection of the nuclear genome of barley by chromosome flow sorting. Theor Appl Genet 113:651–659. doi:10.1007/s00122-006-0329-8

    Article  PubMed  CAS  Google Scholar 

  • The International Barley Genome Sequencing Consortium (IBSC) (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716. doi:10.1038/Nature11543

    Google Scholar 

  • Thiel T, Kota R, Grosse I, Stein N, Graner A (2004) SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Res 32:1–e5. doi:10.1093/nar/gnh006

    Article  Google Scholar 

  • Thiel T, Graner A, Waugh R, Grosse I, Close TJ, Stein N (2009) Evidence and evolutionary analysis of ancient whole-genome duplication in barley predating the divergence from rice. BMC Evolutionary Biology 9: DOI: 10.1186/1471-2148-9-209

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034. doi:10.1126/science.1117619

    Article  PubMed  CAS  Google Scholar 

  • Vu GTH, Wicker T, Buchmann JP, Chandler PM, Matsumoto T, Graner A, Stein N (2010) Fine mapping and syntenic integration of the semi-dwarfing gene sdw3 of barley. Funct Integr Genomics 10:509–521. doi:10.1007/s10142-010-0173-4

    Article  PubMed  CAS  Google Scholar 

  • Wenzl P, Li HB, Carling J, Zhou MX, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesna J, Cakir M, Poulsen D, Wang JP, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206. doi:10.1186/1471-2164-7-206

    Article  PubMed  Google Scholar 

  • Yan LL, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644. doi:10.1126/science.1094305

    Article  PubMed  CAS  Google Scholar 

  • You FM, Huo NX, Gu YQ, Luo MC, Ma YQ, Hane D, Lazo GR, Dvorak J, Anderson OD (2008) BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinforma 9:253. doi:10.1186/1471-2105-9-253

    Article  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge the excellent technical help of Jelena Perovic and Jenny Knibbiche. The work was financially supported by a grant of the German Ministry of Education and Research (BMBF) in frame of the GABI-FUTURE program (FKZ0314000, BARLEX) to NS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Stein.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary data Table 1

Barley genome zipper of chromosome 2H (Mayer et al., 2011) for which additional information containing gene model IDs along with highlighted 2HL region selected have been provided (XLSX 1058 kb)

Supplementary data Table 2

Comparison of representativeness of the 14 cM interval to the entire chromosome 2H genome zipper (DOCX 11 kb)

Supplementary data Table 3

Genotyping data of the genome zipper-based genetic markers on a population comprising 93 doubled haploid progeny derived from the cross cv. ‘Morex’ × cv. ‘Barke’ (Close et al. 2009) (XLSX 454 kb)

Supplementary data Table 4

All genetic markers developed and their respective information including primer sequences, annealing temperature, polymorphism types and the restriction enzyme utilised to develop CAPS and dCAPS markers (XLSX 17.8 kb)

Supplementary data Table 5

Markers commonly mapped in TDMs map (Potokina et al., 2008) and the barley genome zippers that were utilised for genome-wide assessment of order prediction in barley genome zippers (XLSX 54.4 kb)

Supplementary data Table 6

Primers that were developed on the basis of barley chromosome 2H genome zipper (14 cM interval), their respective BAC clone and physical map contigs identified by PCR-based BAC library screening (XLSX 41.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poursarebani, N., Ariyadasa, R., Zhou, R. et al. Conserved synteny-based anchoring of the barley genome physical map. Funct Integr Genomics 13, 339–350 (2013). https://doi.org/10.1007/s10142-013-0327-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-013-0327-2

Keywords

Navigation