Skip to main content
Log in

The gibberellic-acid insensitive dwarfing gene sdw3 of barley is located on chromosome 2HS in a region that shows high colinearity with rice chromosome 7L

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

In this study, comparative high resolution genetic mapping of the GA-insensitive dwarfing gene sdw3 of barley revealed highly conserved macrosynteny of the target region on barley chromosome 2HS with rice chromosome 7L. A rice contig covering the sdw3-orthologous region was identified and subsequently exploited for marker saturation of the target interval in barley. This was achieved by (1) mapping of rice markers from the orthologous region of the rice genetic map, (2) mapping of rice ESTs that had been physically localized on the rice contig, or (3) mapping of barley ESTs that show strong sequence similarity to coding sequences present in the rice contig. Finally, the sdw3 gene was mapped to an interval of 0.55 cM in barley, corresponding to a physical distance of about 252 kb in rice, after employing orthologous EST-derived rice markers. Three putative ORFs were identified in this interval in rice, which exhibited significant sequence similarity to known signal regulator genes from different species. These ORFs can serve as starting points for the map-based isolation of the sdw3 gene from barley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–D
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL, Freeling M (1993) Grasses as a single genetic system: Genome composition, collinearity and compatibility. Trends Genet 9:259–261

    CAS  PubMed  Google Scholar 

  • Bennetzen JL, Ma J (2003) The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis. Curr Opin Plant Biol 6:128–133

    Article  CAS  PubMed  Google Scholar 

  • Börner A, Lehmann CO, Mettin D (1987) Preliminary results of a screening for GA3 response in wheats of the Gatersleben gene bank. Kulturpflanze 35:179–186

    Google Scholar 

  • Börner A, Korzun V, Malyshev S, Ivandic V, Graner A (1999) Molecular mapping of two dwarfing genes differing in their GA response on chromosome 2H of barley. Theor Appl Genet 99:670–675

    Article  Google Scholar 

  • Brueggeman R, Rostoks N, Kundra D, Killian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci 99:1–6

    Article  PubMed  Google Scholar 

  • Brunner S, Keller B, Feuillet C (2003) A large rearrangement involving genes and low-copy DNA interrupts the microcollinearity between rice and barley at the Rph7 locus. Genetics 164:673–683

    CAS  PubMed  Google Scholar 

  • Causse MA, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu K, Xiao Z, Yu Z, Roland PC, Harrington SE, Second G, McCouch SR, Tanksley SD (1994) Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138:1251–1274

    CAS  PubMed  Google Scholar 

  • Chandler PM, Marion-Poll A, Gubler F (2002) Mutants at the Slender 1 locus of barley cv Himalaya. Molecular and physiological characterization. Plant Physiol 129:181–190

    Article  CAS  PubMed  Google Scholar 

  • Chen M, et al (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14:537–545

    CAS  PubMed  Google Scholar 

  • Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu J-L, Huckelhoven R, Stein M, Freialdenhoven A, Somerville SC, Schulze-Lefert P (2003) SNARE protein mediated disease resistance at the plant cell wall. Nature 425:973–977

    Article  CAS  PubMed  Google Scholar 

  • Costa JM, Corey A, Hayes PM, Jobet C, Kleinhofs A, Kopisch-Obusch A, Kramer SF, Kudrna D, Li M, Riera-Lizarazu O, Sato K, Szucs P, Toojinda T, Vales MI, Wolfe RI (2001) Molecular mapping of the Oregon Wolfe barleys: a phenotypically polymorphic doubled-haploid population. Theor Appl Genet 103:415–424

    CAS  Google Scholar 

  • Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey PN (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86:423–33

    PubMed  Google Scholar 

  • Dunford RP, Yano M, Kurata N, Sasaki T, Huestis G, Rocheford T, Laurie DA (2002) Comparative mapping of the barley Ppd-H11 photoperiod response gene region, which lies close to a junction between two rice linkage segments. Genetics 161:825–834

    Google Scholar 

  • Favret EA, Favret GC, Malvarez EM (1975) Genetic regulatory mechanisms for seedling growth in barley. In: Barley Genetics III (Proceedings of the Third International Barley Genetics Symposium, Garching, Germany), pp 37–42

  • Finkelstein RR, Gampala SSL, Rock C (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:15–45

    Google Scholar 

  • Freeling M (2001) Grasses as a single genetic system. Reassessment 2001. Plant Physiol 125:1191–1197

    Article  CAS  PubMed  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci 95:1971–1974

    CAS  PubMed  Google Scholar 

  • Gallego F, Feuillet C, Messmer M, Penger A, Graner A, Yano M, Sasaki T, Keller B (1998) Comparative mapping of two wheat leaf rust resistance loci Lr1 and Lr10 in rice and barley. Genome 41:328–336

    Article  CAS  PubMed  Google Scholar 

  • Gaut BS (2002) Evolutionary dynamics of grass genomes. New Phytol 154:15–28

    Article  CAS  Google Scholar 

  • Gocal GFW, Sheldon CC, Gubler F, Moritz T, Bagnall DJ, MacMillan CP, Li SF, Parish RW, Dennis ES, Weigel D, King RW (2001) GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis. Plant Physiol 127:1682–1693

    CAS  PubMed  Google Scholar 

  • Goff S, et al (2002) A draft sequence of the rice genome (Oryza sative L. ssp. japonica). Science 296:92–100

    CAS  PubMed  Google Scholar 

  • Graner A, Siedler H, Jahoor A, Herrmann RG, Wenzel G (1990) Assessment of the degree and the type of restriction fragment length polymorphism in barley (Hordeum vulgare). Theor Appl Genet 80:826–832

    Google Scholar 

  • Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map in barley. Theor Appl Genet 83:250–256

    Google Scholar 

  • Gubler F, Watts RJ, Kalla R, Mattews P, Keys M, Jacobsen JV (1997) Cloning of a rice cDNA encoding a transcriptional factor homologous to barley GAMYB. Plant Cell Physiol 38:362–365

    Google Scholar 

  • Harushima Y, et al (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148:479–494

    CAS  PubMed  Google Scholar 

  • Havukkala IJ (1996) Cereal genome analysis using rice as a model. Curr Opin Genet Dev 6:711–714

    Article  CAS  PubMed  Google Scholar 

  • Hedden P (2003) The genes of the Green Revolution. Trends Genet 19:5–9

    Article  CAS  PubMed  Google Scholar 

  • Hooley R (1994) Gibberellins: perception, transduction and response. Plant Mol Biol 26:1529–1555

    CAS  PubMed  Google Scholar 

  • Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J (2001) Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13:999–1010

    CAS  PubMed  Google Scholar 

  • Islam AKMR, Shepherd KW, Sparrow DHB (1981) Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Heredity 46:161–174

    Google Scholar 

  • Kilian A, Chen J, Han F, Steffenson B, Kleinhofs A (1997) Towards map-based cloning of the barley stem rust resistance genes Rpg1 and rpg4 using rice as an intergenomic cloning vehicle. Plant Mol Biol 35:187–195

    CAS  PubMed  Google Scholar 

  • Kleinhofs A, et al (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712

    CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kovtun Y, Chiu W-L, Zeng W, Sheen J (1998) Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395:716–720

    Article  CAS  PubMed  Google Scholar 

  • Künzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412

    PubMed  Google Scholar 

  • Langridge P, Karakousis A, Collins N, Kretschmer J, Manning S (1995) A consensus linkage map of barley. Mol Breed 1:389–395

    CAS  Google Scholar 

  • Laurie DA, Devos KM (2002) Trends in comparative genetics and their potential impacts on wheat and barley research. Plant Mol Biol 48:729–740

    Article  CAS  PubMed  Google Scholar 

  • Leister D, Kurth J, Laurie DA, Yano M, Sasaki T, Devos K, Graner A, Schulze-Lefert P (1998) Rapid reorganization of resistance gene homologues in cereal genomes. Proc Natl Acad Sci USA 95:370–375

    CAS  PubMed  Google Scholar 

  • Li H, Shen J-J, Zheng Z-L, Lin Y, Yang Z (2001) The Rop GTPase switch controls multiple developmental processes in Arabidopsis. Plant Physiol 126:670–684

    Article  CAS  PubMed  Google Scholar 

  • Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938

    PubMed  Google Scholar 

  • Martin DN, Proebsting WM, Parks TD, Dougherty WG, Lange T, Lewis MJ, Gaskin P, Hedden P (1996) Feed-back regulation of gibberellin metabolism and gene expression in Pisum sativum L. Planta 200:159–166

    CAS  PubMed  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis. A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    PubMed  Google Scholar 

  • Moore G, Devos KM, Wang Z, Gale MD (1995) Cereal genome evolution: grasses, line up and form a circle. Curr Biol 5:737 – 739

    CAS  PubMed  Google Scholar 

  • Ogawa M, Kusano T, Katsumi M, Sano H (2000) Rice gibberellin-insensitive gene homologue, OsGAI , encodes a nuclear localized protein capable of gene activation at transcriptional level. Gene 245:21–29

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997) The Arabidopsis GAI gene defines a signalling pathway that negatively regulates gibberellin response. Genes Dev 11:3194–3205

    CAS  PubMed  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F (1999) “Green Revolution” genes encode mutant gibberellin response modulators. Nature 400:256–261

    CAS  PubMed  Google Scholar 

  • Perovic D, Stein N, Zhang, H, Drescher A, Prasad M, Kota R, Kopahnke D, Graner A (2004) An integrated approach for comparative mapping in rice and barley with special reference to the Rph16 resistance locus. Funct Integr Genomics, in press

  • Pysh LD, Wysocka-Diller, Camilleri C, Bouchez D, Benefy PN (1999) The GRAS gene family in Arabidopsis: sequence characterisation and basic expression analysis of the SCARECROW-LIKE genes. Plant J 18:111–119

    Article  PubMed  Google Scholar 

  • Qi X, Stam P, Lindhout P (1996) Comparison and integration of four barley genetic maps. Genome 39:379–394

    CAS  Google Scholar 

  • Richards DE, King KE, Ait-ali T, Harberd P (2001) How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling. Annu Rev Plant Physiol Plant Mol Biol 52:67–88

    Article  CAS  PubMed  Google Scholar 

  • Robertson M, Swain SM, Chandler PM, Olszewski NE (1998) Identification of a negative regulator of gibberellin action, HvSPY, in barley. Plant Cell 10:995–1008

    Google Scholar 

  • Saghai Maroof MA, Yang GP, Biyashev RM, Maughan PJ, Zhang Q (1996) Analysis of the barley and rice genomes by comparative RFLP linkage mapping. Theor Appl Genet 92:541–551

    CAS  Google Scholar 

  • Sakata K, Nagamura Y, Numa H, Antonio BA, Nagasaki H, Idonuma A, Watanabe W, Shimizu Y, Horiuchi I, Matsumoto T, Sasaki T, Higo K (2002) RiceGAAS: an automated annotation system and database for rice genome sequence. Nucleic Acids Res 30:98–102

    Article  CAS  PubMed  Google Scholar 

  • Sheen J (2001) Update on signal transduction: signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127:1466–1475

    Article  CAS  PubMed  Google Scholar 

  • Silverstone AL, Ciampaglio CN, Sun T-p (1998) The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10:155–69

    CAS  PubMed  Google Scholar 

  • Smilde WD, Haluskova J, Sasaki T, Graner A (2001) New evidence for the synteny of rice chromosome 1 and barley chromosome 3H from rice expressed sequence tags. Genome 44:361–367

    CAS  PubMed  Google Scholar 

  • Swain SM, Olszewski NE (1996) Genetic analysis of gibberellin signal transduction. Plant Physiol 112:11–17

    CAS  PubMed  Google Scholar 

  • Van Deynze AE, Nelson JC, Yglesias ES, Harrington SE, Braga DP, McCouch SR, Sorrells ME (1995) Comparative mapping in grasses. Wheat relationships. Mol Gen Genet 248:744–754

    PubMed  Google Scholar 

  • Van Deynze AE, Sorrells ME, Park WD, Ayres NM, Fu H, Cartinhour SW, Paul E, McCouch SR (1998) Anchor probes for comparative mapping of grass genera. Theor Appl Genet 97:356–369

    Article  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) Join Map 3.0 Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands

  • Wu J, (2002) A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell 14:525–535

    CAS  PubMed  Google Scholar 

  • Yamamoto K, Sasaki T (1997) Large-scale EST sequencing in rice. Plant Mol Biol 35:135–144

    CAS  PubMed  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci 100:6263–6268

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura A, Ideta O, Iwata N (1997) Linkage map of phenotype and RFLP markers in rice. Plant Mol Biol 35:49–60

    CAS  PubMed  Google Scholar 

  • Yu J, et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–91

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. G. Künzel for performing barley translocation breakpoint mapping. We also thank Dr. D. Smilde and Dr. M. Wolf for constructive discussions, and R. Voss, S. Gentz, U. Beier and S. Stegmann for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Graner.

Additional information

Communicated by R. Hagemann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gottwald, S., Stein, N., Börner, A. et al. The gibberellic-acid insensitive dwarfing gene sdw3 of barley is located on chromosome 2HS in a region that shows high colinearity with rice chromosome 7L. Mol Genet Genomics 271, 426–436 (2004). https://doi.org/10.1007/s00438-004-0993-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-004-0993-9

Keywords

Navigation