Skip to main content
Log in

Comparative genetic analysis of a wheat seed dormancy QTL with rice and Brachypodium identifies candidate genes for ABA perception and calcium signaling

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Wheat preharvest sprouting (PHS) occurs when seed germinates on the plant before harvest resulting in reduced grain quality. In wheat, PHS susceptibility is correlated with low levels of seed dormancy. A previous mapping of quantitative trait loci (QTL) revealed a major PHS/seed dormancy QTL, QPhs.cnl-2B.1, located on wheat chromosome 2B. A comparative genetic study with the related grass species rice (Oryza sativa L.) and Brachypodium distachyon at the homologous region to the QPhs.cnl-2B.1 interval was used to identify the candidate genes for marker development and subsequent fine mapping. Expressed sequence tags and a comparative mapping were used to design 278 primer pairs, of which 22 produced polymorphic amplicons that mapped to the group 2 chromosomes. Fourteen mapped to chromosome 2B, and ten were located in the QTL interval. A comparative analysis revealed good macrocollinearity between the PHS interval and 3 million base pair (mb) region on rice chromosomes 7 and 3, and a 2.7-mb region on Brachypodium Bd1. The comparative intervals in rice were found to contain three previously identified rice seed dormancy QTL. Further analyses of the interval in rice identified genes that are known to play a role in seed dormancy, including a homologue for the putative Arabidopsis ABA receptor ABAR/GUN5. Additional candidate genes involved in calcium signaling were identified and were placed in a functional protein association network that includes additional proteins critical for ABA signaling and germination. This study provides promising candidate genes for seed dormancy in both wheat and rice as well as excellent molecular markers for further comparative and fine mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Cai H, Morishima H (2000) Genomic regions affected seed shattering and seed dormancy in rice. Theor Appl Genet 100:840–846

    Article  CAS  Google Scholar 

  • Cai H, Morishima H (2002) QTL clusters reflect character associations in wild and cultivated rice. Theor Appl Genet 104:1217–1228

    Article  PubMed  CAS  Google Scholar 

  • Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD, Gale MD (1989) RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet 78:495–504

    Article  CAS  Google Scholar 

  • D'Angelo C, Weinl S, Batistic O, Pandey GK, Cheong YH, Schultke S, Albrecht V, Ehlert B, Schulz B, Harter K, Luan S, Bock R, Kudla J (2006) Alternative complex formation of the Ca2+-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. Plant J 48:857–872

    Article  PubMed  Google Scholar 

  • Devos KM, Millan T, Gale MD (1993) Comparative RFLP maps of the homoeologous group-2 chromosomes of wheat, rye and barley. Theor Appl Genet 85:784–792

    CAS  Google Scholar 

  • Devos KM, Gale MD (2000) Genome relationships: the grass model in current research. Plant Cell 12:637–646

    Article  PubMed  CAS  Google Scholar 

  • Distelfeld A, Uauy C, Olmos S, Schlatter A, Dubcovsky J, Fahima T (2004) Microcollinearity between a 2-cM region encompassing the grain protein content locus Gpc-6B1 on wheat chromosome 6B and a 350-kb region on rice chromosome 2. Funct Integr Genomics 4:59–66

    Article  PubMed  CAS  Google Scholar 

  • Gu XY, Kianian SF, Foley ME (2004) Multiple loci and epistases control genetic variation for seed dormancy in weedy rice (Oryza sativa). Genetics 166:1503–1516

    Article  PubMed  CAS  Google Scholar 

  • Gu X, Kianian SF, Foley ME (2005a) Phenotypic selection for dormancy introduced a set of adaptive haplotypes from weedy into cultivated rice. Genetics 171:695–704

    Article  CAS  Google Scholar 

  • Gu X, Kianian SF, Hareland GA, Hoffer BL, Foley ME (2005b) Genetic analysis of adaptive syndromes interrelated with seed dormancy in weedy rice (Oryza sativa). Theor Appl Genet 110:1108–1118

    Article  CAS  Google Scholar 

  • Guo Y, Xiong L, Song CP, Gong D, Halfter U, Zhu JK (2002) A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev Cell 3:233–244

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru K, Yano M, Aoki N, Ono K, Hirose T, Lin SY, Monna L, Sasaki T, Ohsugi R (2001) Toward the mapping of physiological and agronomic characters on a rice function map: QTL analysis and comparison between QTLs and expressed sequence tags. Theor Appl Genet 102:793–800

    Article  CAS  Google Scholar 

  • Jiang L, Cao YJ, Wang CM, Zhai HQ, Wan JM, Atsushi Y (2003) Detection and analysis of QTL for seed dormancy in rice (Oryza sativa L.) using RIL and CSSL population. Acta Genetica Sinica 30:453–458

    PubMed  CAS  Google Scholar 

  • Kim K-N, Cheong YH, Grant JJ, Pandey GK, Luan S (2003) CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 15:411–423

    Article  PubMed  CAS  Google Scholar 

  • La Rota M, Sorrells ME (2004) Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. Funct Integr Genomics 4:34–46

    Article  PubMed  Google Scholar 

  • Leonova I, Laikova L, Popova O, Unger O, Börner A, Röder M (2007) Detection of quantitative trait loci for leaf rust resistance in wheat—T. timopheevii/T. tauschii introgression lines. Euphytica 155:79–86

    Article  Google Scholar 

  • Li A, Wang X, Leseberg CH, Jia J, Mao L (2008) Biotic and abiotic stress responses through calcium-dependent protein kinase (CDPK) signaling in wheat (Triticum aestivum L.). Plant Signal Behav 3:654–656

    Article  PubMed  Google Scholar 

  • Li W, Gill BS (2002) The collinearity of the Sh2/A1 orthologous region in rice, sorghum and maize is interrupted and accompanied by genome expansion in the triticeae. Genetics 160:1153–1162

    PubMed  CAS  Google Scholar 

  • Lin SY, Sasaki T, Yano M (1998) Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theor Appl Genet 96:997–1003

    Article  CAS  Google Scholar 

  • Liu Q, Feng J, Buzin C, Wen C, Nozari G, Mengos A, Nguyen V, Liu J, Crawford L, Fujimura FK, Sommer SS (1999) Detection of virtually all mutations-SSCP (DOVAM-S): a rapid method for mutation scanning with virtually 100% sensitivity. Biotechniques 26:932–942

    PubMed  CAS  Google Scholar 

  • Liu S, Zhang X, Pumphrey MO, Stack RW, Gill BS, Anderson JA (2006) Complex microcolinearity among wheat, rice, and barley revealed by fine mapping of the genomic region harboring a major QTL for resistance to fusarium head blight in wheat. Funct Integr Genomics 6:83–89

    Article  PubMed  CAS  Google Scholar 

  • Lu G, Moriyama EN (2004) Vector NTI, a balanced all-in-one sequence analysis suite. Brief Bioinform 5:378–388

    Article  PubMed  CAS  Google Scholar 

  • Mallard S, Gaudet D, Aldeia A, Abelard C, Besnard AL, Sourdille P, Dedryver F (2005) Genetic analysis of durable resistance to yellow rust in bread wheat. Theor Appl Genet 110:1401–1409

    Article  PubMed  CAS  Google Scholar 

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  • Meyer K, Leube MP, Grill E (1994) A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science 264:1452–1455

    Article  PubMed  CAS  Google Scholar 

  • Miao Y, Lv D, Wang P, Wang X-C, Chen J, Miao C, Song C-P (2006) An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18:2749–2766

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Lin Y, Yano M, Nagamine T (2002) Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.). Theor Appl Genet 104:981–986

    Article  PubMed  CAS  Google Scholar 

  • Munkvold JD, Tanaka J, Benscher D, Sorrells ME (2009) Mapping quantitative trait loci for preharvest sprouting resistance in white wheat. Theor Appl Genet 119:1223–1235

    Article  PubMed  CAS  Google Scholar 

  • Ok SH, Jeong HJ, Bae JM, Shin JS, Luan S, Kim KN (2005) Novel CIPK1-associated proteins in Arabidopsis contain an evolutionarily conserved C-terminal region that mediates nuclear localization. Plant Physiol 139:138–150

    Article  PubMed  CAS  Google Scholar 

  • Pandey GK, Cheong YH, Kim KN, Grant JJ, Li L, Hung W, D'angelo C, Weinl S, Kudia J, Luan S (2004) The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell 16:1912–1924

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  PubMed  CAS  Google Scholar 

  • Qin Y, Li X, Guo M, Deng K, Lin J, Tang D, Guo X, Liu X (2008) Regulation of salt and ABA responses by CIPK14, a calcium sensor interacting protein kinase in Arabidopsis. Sci China C Life Sci 51:391–401

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez PL, Benning G, Grill E (1998) ABI2, a second protein phosphatase 2C involved in abscisic acid signal transduction in Arabidopsis. FEBS 421:185–190

    Article  CAS  Google Scholar 

  • Sheen J (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274:1900–1902

    Article  PubMed  CAS  Google Scholar 

  • Shen Y-Y, Wang X-F, Wu F-Q, Du S-Y, Cao Z, Shang Y, Wang X-L, Peng C-C, Yu X-C, Zhu S-Y, Fan R-C, Xu Y-H, Zhang D-P (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443:823–826

    Article  PubMed  CAS  Google Scholar 

  • Somers D, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Miftahudin MA, Ma X, Gustafson PJ, Qi LL, Echalier B, Gill BS, Matthews DE, Lazo GR, Chao S, Anderson OD, Edwards H, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Zhang D, Nguyen HT, Peng J, Lapitan NL, Gonzalez-Hernandez JL, Anderson JA, Hossain K, Kalavacharla V, Kianian SF, Choi DW, Close TJ, Dilbirligi M, Gill KS, Steber C, Walker-Simmons MK, McGuire PE, Qualset CO (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    PubMed  CAS  Google Scholar 

  • Sugimoto K, Takeuchi Y, Ebana K, Miyao A, Hirochika H, Hara N, Ishiyama K, Kobayashi M, Ban Y, Hattori T, Yano M (2010) Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proc Natl Acad Sci USA. doi:10.1073/pnas.0911965107

    Google Scholar 

  • Sunnucks P, Wilson AC, Beheregaray LB, Zenger K, French J, Taylor AC (2000) SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology. Mol Ecol 9:1699–1710

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi Y, Lin SY, Sasaki T, Yano M (2003) Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice. Theor Appl Genet 107:1174–1180

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  Google Scholar 

  • Wan JM, Cao YJ, Wang CM, Ikehashi H (2005) Quantitative trait loci associated with seed dormancy in rice. Crop Sci 45:712–716

    Article  CAS  Google Scholar 

  • Woodger F, Millar A, Murray F, Jacobsen J, Gubler F (2003) The role of GAMYB transcription factors in GA-regulated gene expression. J Plant Growth Regul 22:176–184

    Article  CAS  Google Scholar 

  • Wu S, Pumphrey M, Bai G (2009) Molecular mapping of stem-rust-resistance gene Sr40 in wheat. Crop Sci 49:1681–1686

    Article  CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially supported by Hatch project149402 and a USDA National Research Initiative Competitive grant from the USDA Cooperative State Research, Education, and Extension Service Coordinated Agriculture Project grants 2005-05130 and 2006-55606-16629.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Sorrells.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplementary Table 1

New markers designed from wheat ESTs, their contigs, and wheat transcripts. The PCR annealing temperatures were 56°C except where indicated otherwise. The estimated DNA fragment size is based on a 4% PAGE gel. F, forward primer; R, reverse primer, and chr, chromosome (DOC 75 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somyong, S., Munkvold, J.D., Tanaka, J. et al. Comparative genetic analysis of a wheat seed dormancy QTL with rice and Brachypodium identifies candidate genes for ABA perception and calcium signaling. Funct Integr Genomics 11, 479–490 (2011). https://doi.org/10.1007/s10142-011-0219-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-011-0219-2

Keywords

Navigation