Skip to main content
Log in

Gene networks in the synthesis and deposition of protein polymers during grain development of wheat

  • Review
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

As the amino acid storing organelle, the protein bodies provide nutrients for embryo development, seed germination and early seedling growth through storage proteolysis in cereal plants, such as wheat and rice. In protein bodies, the monomeric and polymeric prolamins, i.e. gliadins and glutenins, form gluten and play a key role in determining dough functionality and end-product quality of wheat. The formation of intra- and intermolecular bonds, including disulphide and tyrosine bonds, in and between prolamins confers cohesivity, viscosity, elasticity and extensibility to wheat dough during mixing and processing. In this review, we summarize recent progress in wheat gluten research with a focus on the fundamental molecular biological aspects, including transcriptional regulation on genes coding for prolamin components, biosynthesis, deposition and secretion of protein polymers, formation of protein bodies, genetic control of seed storage proteins, the transportation of the protein bodies and key enzymes for determining the formation of disulphide bonds of prolamin polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albani D, Hammond-Kosack MC, Smith C, Conlan S, Colot V, Holdsworth M, Bevan MW (1997) The wheat transcriptional activator SPA: a seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes. Plant Cell 9:171–184

    PubMed  CAS  Google Scholar 

  • Altenbach SB (1998) Quantification of individual low-molecular-weight glutenin subunit transcripts in developing wheat grains by competitive RT-PCR. Theor Appl Genet 97:413–421

    CAS  Google Scholar 

  • Altenbach SB, Kothari KM, Lieu D (2002) Environmental conditions during wheat grain development alter temporal regulation of major gluten protein genes. Cereal Chem 79:279–285

    CAS  Google Scholar 

  • Altschuler Y, Galili G (1994) Role of conserved cysteines of a wheat gliadin in its transport and assembly into PBs in Xenopus oocytes. J Biol Chem 269:6677–6682

    PubMed  CAS  Google Scholar 

  • Alvarez ML, Guelman S, Halford NG, Lustig S, Reggiardo MI, Ryabushkina N, Shewry P, Stein J, Vallejos RH (2000) Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theor Appl Genet 100:319–327

    CAS  Google Scholar 

  • Anderson O, Greene F (1997) The α-gliadin gene family. II. DNA and protein sequence variation, subfamily structure, and origins of pseudogenes. Theor Appl Genet 95:59–65

    CAS  Google Scholar 

  • Anderson OD, Rausch C, Moullet O, Lagudah ES (2003) The wheat D-genome HMW-glutenin locus: BAC sequencing, gene distribution, and retrotransposon clusters. Funct Integr Genomics 3:56–68

    PubMed  CAS  Google Scholar 

  • Anjum FM, Khan MR, Din A, Saeed M, Pasha I, Arshad MU (2007) Wheat gluten: high molecular weight glutenin subunits—structure, genetics, and relation to dough elasticity. J Food Sci 72:R56–63

    PubMed  CAS  Google Scholar 

  • Barlowe C (2003) Signals for COPII-dependent export from the ER: what's the ticket out? Trends Cell Biol 13:295–300

    PubMed  CAS  Google Scholar 

  • Bechtel DB, Wilson JD, Shewry PR (1991) Immunocytochemical localization of the wheat storage protein triticin in developing endosperm tissue. Cereal Chem 68:573–577

    Google Scholar 

  • Benchabane M, Goulet C, Rivard D, Faye L, Gomord V, Michaud D (2008) Preventing unintended proteolysis in plant protein biofactories. Plant Biotechnol J 6:633–648

    PubMed  CAS  Google Scholar 

  • Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2:326–332

    PubMed  CAS  Google Scholar 

  • Bittel DC, Hueros G, Jouve N, Gustafson JP (1991) Changes in expression of seed storage protein genes effected by chromosome 1D of wheat. Genome 34:845–848

    CAS  Google Scholar 

  • Branlard G, Dardevet M, Amiour N, Igrejas G (2003) Allelic diversity of HMW and LMW glutenin subunits and omega-gliadins in French bread wheat (Triticum aestivum L.). Genet Resour Crop Evol 50:669–679

    CAS  Google Scholar 

  • Brown JWS, Flavell RB (1981) Fractionation of wheat gliadin and glutenin subunits by two-dimensional electrophoresis and the role of group 6 and group 2 chromosomes in gliadin synthesis. Theor Appl Genet 59:349–359

    CAS  Google Scholar 

  • Chen R, Ni Z, Qin Y, Nie X, Lin Z, Dong G, Sun Q (2005) Isolation and characterization of TaDof1 transcription factor in wheat (Triticum aestivum L.). DNA Seq 16:358–363

    PubMed  CAS  Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    PubMed  CAS  Google Scholar 

  • Chou IT, Gasser CS (1997) Characterization of the cyclophilin gene family of Arabidopsis thaliana and phylogenetic analysis of known cyclophilin proteins. Plant Mol Biol 35:873–892

    PubMed  CAS  Google Scholar 

  • Ciaffi M, Paolacci AR, Dominici L, Tanzarella OA, Porceddu E (2001) Molecular characterization of gene sequences coding for protein disulfide isomerase (PDI) in durum wheat (Triticum turgidum ssp. durum). Gene 265:147–156

    PubMed  CAS  Google Scholar 

  • Ciaffi M, Paolacci AR, D’Aloisio E, Tanzarella OA, Porceddu E (2006) Cloning and characterization of wheat PDI (protein disulfide isomerase) homoeologous genes and promoter sequences. Gene 366:209–218

    PubMed  CAS  Google Scholar 

  • Coleman CE, Larkins BA (1999) The prolamins of maize. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer Academic, Dordrecht, pp 109–139

    Google Scholar 

  • Conlan RS, Hammond-Kosack M, Bevan M (1999) Transcription activation mediated by the bZIP factor SPA on the endosperm box is modulated by ESBF-1 in vitro. Plant J 19:173–181

    PubMed  CAS  Google Scholar 

  • Diaz I, Martinez M, Isabel-LaMoneda I, Rubio-Somoza I, Carbonero P (2005) The DOF protein, SAD, interacts with GAMYB in plant nuclei and activates transcription of endosperm-specific genes during barley seed development. Plant J 42:652–662

    PubMed  CAS  Google Scholar 

  • Dong G, Ni Z, Yao Y, Nie X, Sun Q (2007) Wheat Dof transcription factor WPBF interacts with TaQM and activates transcription of an alpha-gliadin gene during wheat seed development. Plant Mol Biol 63:73–84

    PubMed  CAS  Google Scholar 

  • D’Ovidio R, Masci S (2004) The low-molecular-weight glutenin subunits of wheat gluten. J Cereal Sci 39:321–339

    Google Scholar 

  • D’Ovidio R, Marchitelli C, Cardelli LE, Porceddu E (1999) Sequence similarity between allelic Glu-B3 genes related to quality properties of durum wheat. Theor Appl Genet 98:455–461

    Google Scholar 

  • Dupont FM, Vensel W, Chan R, Kasarda DD (2000) Characterization of the 1B-type ω-gliadins from Triticum aestivum cultivar Butte. Cereal Chem 77:607–614

    CAS  Google Scholar 

  • Fauteux F, Strömvik MV (2009) Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae. BMC Plant Biol 9:126–136

    PubMed  Google Scholar 

  • Galili G (1997) The prolamin storage proteins of wheat and its relatives. In: Larkins BA, Vasil IK (eds) Cellular and molecular biology of plant seed development. Kluwer, Dordrecht, pp 221–256

    Google Scholar 

  • Geli MI, Torrent M, Ludevid D (1994) Two structural domains mediate two sequential events in γ-zein targeting: protein endoplasmic reticulum retention and protein body formation. Plant Cell 6:1911–1922

    PubMed  CAS  Google Scholar 

  • Grimwade B, Tatham AS, Freedman RB, Shewry PR, Napier JA (1996) Comparison of the expression patterns of genes coding for wheat gluten proteins and proteins involved in the secretory pathway in developing caryopses of wheat. Plant Mol Biol 30:1067–1073

    PubMed  CAS  Google Scholar 

  • Guillaumie S, Charmet G, Linossier L, Torney V, Robert N, Ravel C (2004) Colocation between a gene encoding the bZIP factor SPA and an eQTL for a high-molecular-weight glutenin subunit in wheat (Triticum aestivum). Genome 47:705–713

    PubMed  CAS  Google Scholar 

  • Hammond-Kosack MCU, Holdsworth MJ, Bevan MW (1993) In vivo footprinting of a low molecular weight glutenin gene (LMWG-1D1) in wheat endosperm. EMBO J 12:545–554

    PubMed  CAS  Google Scholar 

  • Hanft F, Koehler P (2005) Quantitation of dityrosine in wheat flour and dough by liquid chromatography-tandem mass spectrometry. J Agric Food Chem 53:2418–2423

    PubMed  CAS  Google Scholar 

  • Hara-Nishimura I, Shimada T, Hatano K, Takeuchi Y, Nishimura M (1998) Transport of storage proteins to protein storage vacuoles is mediated by large precursor-accumulating vesicles. Plant Cell 10:825–836

    PubMed  CAS  Google Scholar 

  • Herman EM, Larkins BA (1999) Protein storage bodies and vacuoles. Plant Cell 11:601–614

    PubMed  CAS  Google Scholar 

  • Huang XQ, Cloutier S (2008) Molecular characterization and genomic organization of low molecular weight glutenin subunit genes at the Glu-3 loci in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 116:953–966

    PubMed  CAS  Google Scholar 

  • Ikeda TM, Nagamine T, Fukuoka H, Yano H (2002) Identification of new low-molecular-weight glutenin subunit genes in wheat. Theor Appl Genet 4:680–687

    Google Scholar 

  • Johnson JC, Bhave M (2004) Molecular characterisation of the protein disulphide isomerase genes of wheat. Plant Sci 167:397–410

    CAS  Google Scholar 

  • Johnson JC, Appels R, Bhave M (2006) The PDI genes of wheat and their syntenic relationship to the esp2 locus of rice. Funct Integr Genomics 6:104–121

    PubMed  CAS  Google Scholar 

  • Jolliffe NA, Craddock CP, Frigerio L (2005) Pathways for protein transport to seed storage vacuoles. Biochem Soc Trans 33:1016–1018

    PubMed  CAS  Google Scholar 

  • Kawagoe Y, Suzuki K, Tasaki M, Yasuda H, Akagi K, Katoh E, Nishizawa NK, Ogawa M, Takaiwa F (2005) The critical role of disulfide bond formation in protein sorting in the endosperm of rice. Plant Cell 17:1141–1153

    PubMed  CAS  Google Scholar 

  • Kawaura K, Mochida K, Ogihara Y (2005) Expression profile of two storage-protein gene families in hexaploid wheat revealed by large-scale analysis of expressed sequence tags. Plant Physiol 139:1870–1880

    PubMed  Google Scholar 

  • Lamacchia C, Shewry PR, Fonzo ND, Forsyth JL, Harris N, Lazzeri PA, Napier JA, Halford NG, Barcelo P (2001) Endosperm-specific activity of a storage protein gene promoter in transgenic wheat seed. J Exp Bot 52:243–250

    PubMed  CAS  Google Scholar 

  • Levanony H, Rubin R, Altschuler Y, Galili G (1992) Evidence for a novel route of wheat storage proteins to vacuoles. J Cell Biol 119:1117–1128

    PubMed  CAS  Google Scholar 

  • Lew EJL, Kuzmicky DD, Kasarda DD (1992) Characterization of low molecular weight glutenin subunits by reversed-phase high-performance liquid chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis, and N-terminal amino acid sequencing. Cereal Chem 69:508–515

    CAS  Google Scholar 

  • Liu L, Wang A, Appels R, Ma J, Xia X, Lan P, He Z, Bekes F, Yan Y, Ma W (2009) A MALDI-TOF based analysis of high molecular weight glutenin subunits for wheat breeding. J Cereal Sci 50:295–301

    CAS  Google Scholar 

  • Liu L, Ikeda TM, Branlard G, Pena RJ, Rogers WJ, Lerner SE, Kolman MA, Xia X, Wang L, Ma W, Appels R, Yoshida H, Wang A, Yan Y, He Z (2010) Comparison of low molecular weight glutenin subunits identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR in common wheat. BMC Plant Biol 10:124

    PubMed  Google Scholar 

  • Lombardi A, Barbante A, Cristina PD, Rosiello D, Castellazzi CL, Sbano L, Masci S, Ceriotti A (2009) A relaxed specificity in interchain disulfide bond formation characterizes the assembly of a low-molecular-weight glutenin subunit in the endoplasmic reticulum. Plant Physiol 149:412–423

    PubMed  CAS  Google Scholar 

  • Loussert C, Popineau Y, Mangavel C (2008) PBs ontogeny and localization of prolamin comonents in the developing endosperm of wheat caryopses. J Cereal Sci 47:445–456

    CAS  Google Scholar 

  • Lucero HA, Kaminer B (1999) The role of calcium on the activity of ER calcistorin/protein disulfide isomerase and the significance of the C-terminal and its calcium binding. A comparison with mammalian protein-disulfide isomerase. J Biol Chem 274:3243–3251

    PubMed  CAS  Google Scholar 

  • Ma W, Zhang W, Gale KR (2003) Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica 134:51–60

    CAS  Google Scholar 

  • Ma W, Appels R, Bekes F, Larroque O, Morell MK, Gale KR (2005) Genetic characterisation of dough rheological properties in a wheat doubled haploid population: additive genetic effects and epistatic interactions. Theor Appl Genet 111:410–422

    PubMed  CAS  Google Scholar 

  • Ma W, Anderson O, Kuchel H, Bonnardeaux Y, Collins H, Morell MK, Langridge P, Appels R (2009) Genomics of quality traits. In: Feuillet C, Muehlbauer GJ (eds) Genetics and genomics of the Triticeae. Springer, New York, pp 611–652

    Google Scholar 

  • Mandal S, Mandal RK (2000) Seed storage proteins and approaches for improvement of their nutritional quality by genetic engineering. Curr Sci 79:576–589

    CAS  Google Scholar 

  • Marty F (1999) Plant vacuoles. Plant Cell 11:587–599

    PubMed  CAS  Google Scholar 

  • Masci S, D'Ovidio R, Lafiandra D, Kasarda DD (1998) Characterization of a low-molecular-weight glutenin subunit gene from bread wheat and the corresponding protein that represents a major subunit of the glutenin polymer. Plant Physiol 118:1147–1158

    PubMed  CAS  Google Scholar 

  • Masumura T, Kidzu K, Sugiyama Y, Mitsukawa N, Hibino T, Tanaka K, Fujii S (1989) Nucleotide sequence of a cDNA encoding a major rice glutelin. Plant Mol Biol 12:723–725

    CAS  Google Scholar 

  • Matsuoka K, Neuhaus JM (1999) Cis-elements of protein transport to the plant vacuoles. J Exp Bot 50:165–174

    CAS  Google Scholar 

  • Mauritzen CAM, Stewart P (1963) Disulphide-sulphydryl exchange in dough. Nature 197:48–49

    PubMed  CAS  Google Scholar 

  • Muench DG, Wu Y, Zhang Y, Li X, Boston RS, Okita TW (1997) Molecular cloning, expression and subcellular localization of a BiP homolog from rice endosperm tissue. Plant Cell Physiol 38:404–412

    PubMed  CAS  Google Scholar 

  • Müntz K (1998) Deposition of storage proteins. Plant Mol Biol 38:77–99

    PubMed  Google Scholar 

  • Napier JA, Richard G, Turner MFP, Shewry PR (1997) Trafficking of wheat gluten proteins in transgenic tobacco plants: ω-gliadin does not contain an endoplasmic reticulum retention signal. Planta 203:488–494

    PubMed  CAS  Google Scholar 

  • Noiva R, Lennarz WJ (1992) Protein disulfide isomerase. J Biol Chem 267:3553–3556

    PubMed  CAS  Google Scholar 

  • Panozzo J, Eagles HA, Wootton M (2001) Changes in protein composition during grain development in wheat. Aust J Agric Res 52:485–493

    CAS  Google Scholar 

  • Payne PI, Jackson EA, Holt LM (1984) The association between γ-gliadin 45 and gluten strength in durum wheat varieties. A direct causal effect on the result of genetic linkage. J Cereal Sci 2:73–81

    CAS  Google Scholar 

  • Peña E, Bernardo A, Soler C, Jouve N (2006) Do tyrosine crosslinks contribute to the formation of the gluten network in common wheat (Triticum aestivum L.) dough? J Cereal Sci 44:144–153

    Google Scholar 

  • Pompa A, Vitale A (2006) Retention of a bean phaseolin/maize γ-Zein fusion in the endoplasmic reticulum depends on disulfide bond formation. Plant Cell 18:2608–2621

    PubMed  CAS  Google Scholar 

  • Ravel C, Nagy IJ, Martre P, Sourdille P, Dardevet M, Balfourier F, Pont C, Giancola S, Praud S, Charmet G (2006) Single nucleotide polymorphism, genetic mapping, and expression of genes coding for the DOF wheat prolamin-box binding factor. Funct Integr Genomics 6:310–321

    PubMed  CAS  Google Scholar 

  • Ravel C, Martre P, Romeuf I, Dardevet M, El-Malki R, Bordes J, Duchateau N, Brunel D, Balfourier F, Charmet G (2009) Nucleotide polymorphism in the wheat transcriptional activator Spa influences its pattern of expression and has pleiotropic effects on grain protein composition, dough viscoelasticity, and grain hardness. Plant Physiol 151:2133–2144

    PubMed  CAS  Google Scholar 

  • Rhazi L, Cazalis R, Aussenac T (2003) Sulfhydryl-disulfide changes in storage proteins of developing wheat grain: influence on the SDS-unextractable glutenin polymer formation. J Cereal Sci 38:3–13

    CAS  Google Scholar 

  • Robinson DG, Hinz G (1999) Golgi-mediated transport of seed storage proteins. Seed Sci Res 9:267–283

    CAS  Google Scholar 

  • Romano PGN, Horton P, Gray JE (2004) The Arabidopsis cyclophilin gene family. Plant Physiol 134:1268–1282

    PubMed  CAS  Google Scholar 

  • Rubin R, Levanony H, Galili G (1992) Evidence for the presence of two different types of PBs in wheat endosperm. Plant Physiol 99:718–724

    PubMed  CAS  Google Scholar 

  • Saito Y, Kishida K, Takata K, Takahashi H, Shimada T, Tanaka K, Morita S, Satoh S, Masumura T (2009) A green fluorescent protein fused to rice prolamin forms protein body-like structures in transgenic rice. J Exp Bot 60:615–627

    PubMed  CAS  Google Scholar 

  • Schmid SL (1997) Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu Rev Biochem 66:511–548

    PubMed  CAS  Google Scholar 

  • Shani N, Rosenberg N, Kasarda DD, Galili G (1994) Mechanisms of assembly of wheat high molecular weight glutenins inferred from expression of wild-type and mutant subunits in transgenic tobacco. J Biol Chem 269:8924–8930

    PubMed  CAS  Google Scholar 

  • Shaw LM, McIntyre CL, Gresshoff PM, Xue GP (2009) Members of the Dof transcription factor family in Triticum aestivum are associated with light-mediated gene regulation. Funct Integr Genomics 9:485–498

    PubMed  CAS  Google Scholar 

  • Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947–958

    PubMed  CAS  Google Scholar 

  • Shewry PR, Halford NG, Tatham AS (1992) High molecular weight subunits of wheat glutenin. J Cereal Sci 15:105–120

    CAS  Google Scholar 

  • Shewry PR, Tatham AS, Halford NG (2001) Nutritional control of storage protein synthesis in developing wheat and barley. Plant Growth Regul 34:105–111

    CAS  Google Scholar 

  • Shimoni Y, Zhu X, Levanony H, Segal G, Galili G (1995) Purification, characterization, and intracellular localization of glycosylated protein disulfide isomerase from wheat grains. Plant Physiol 108:327–335

    PubMed  CAS  Google Scholar 

  • Sreeramulu G, Singh NK (1997) Genetic and biochemical characterization of novel low molecular weight glutenin subunits in wheat (Triticum aestivum L.). Genome 40:41–48

    PubMed  CAS  Google Scholar 

  • Takaiwa F, Yamanouchi U, Yoshihara T, Washida H, Tanabe F, Kato A, Yamada K (1996) Characterization of common cis-regulatory elements responsible for the endosperm-specific expression of members of the rice glutelin multigene family. Plant Mol Biol 30:1207–1221

    PubMed  CAS  Google Scholar 

  • Takaiwa F, Hirose S, Takagi H, Yang L, Wakasa Y (2009) Deposition of a recombinant peptide in ER-derived PBs by retention with cysteine-rich prolamins in transgenic rice seed. Planta 229:1147–1158

    PubMed  CAS  Google Scholar 

  • Takemoto Y, Coughlan SJ, Okita TW, Satoh H, Ogawa M, Kumamaru T (2002) The rice mutant esp2 greatly accumulates the glutelin precursor and deletes the protein disulfide isomerase. Plant Physiol 128:1212–1222

    PubMed  CAS  Google Scholar 

  • Thomas MS, Flavell RB (1990) Identification of an enhancer element for the endosperm-specific expression of high molecular weight glutenin. Plant Cell 2:1171–1180

    PubMed  CAS  Google Scholar 

  • Tilley KA, Benjamin RE, Bagorogoza KE, Okot-Kotber BM, Prakash O, Kwen H (2001) Tyrosine cross-links: molecular basis of gluten structure and function. J Agric Food Chem 49:2627–2632

    PubMed  CAS  Google Scholar 

  • Tosi P, Parker M, Gritsch CS, Carzaniga R, Martin B, Shewry PR (2009) Trafficking of storage proteins in developing grain of wheat. J Exp Bot 60:979–991

    PubMed  CAS  Google Scholar 

  • Veraverbeke WS, Delcour JA (2002) Wheat protein composition and properties of wheat glutenin in relation to breadmaking functionality. Crit Rev Food Sci Nutr 42:179–208

    PubMed  CAS  Google Scholar 

  • Vitale A, Ceriotti A (2004) Protein quality control mechanisms and protein storage in the endoplasmic reticulum. A conflict of interests? Plant Physiol 136:3420–3426

    PubMed  CAS  Google Scholar 

  • Vitale A, Denecke J (1999) The endoplasmic reticulum: gateway of the secretory pathway. Plant Cell 11:615–628

    PubMed  CAS  Google Scholar 

  • Vitale A, Galili G (2001) The endomembrane system and the problem of protein sorting. Plant Physiol 125:115–118

    PubMed  CAS  Google Scholar 

  • Wan Y, Poole RL, Huttly AK, Toscano-Underwood C, Feeney K, Welham S, Gooding MJ, Mills C, Edwards KJ, Shewry PR, Mitchell RA (2008) Transcriptome analysis of grain development in hexaploid wheat. BMC Genomics 9:121

    PubMed  Google Scholar 

  • Wang CC, Tsou CL (1993) Protein disuffide isomerase is both an enzyme and a chaperone. FASEB J 7:1515–1517

    PubMed  CAS  Google Scholar 

  • Wang YL, Xu MX, Yin GX, Tao LL, Wang DW, Ye XG (2009) Agrobacterium-mediated transformation of common wheat varieties using explant tissues derived from mature embryo. Cereal Res Commun 37:1–12

    Google Scholar 

  • Wieser H (2007) Chemistry of gluten proteins. Food Microbiol 24:115–119

    PubMed  CAS  Google Scholar 

  • Wilkinson B, Gilbert HF (2004) Protein disulfide isomerase. Biochim Biophys Acta 1699:35–44

    PubMed  CAS  Google Scholar 

  • Wu J, Kaufman RJ (2006) From acute ER stress to physiological roles of the unfolded protein response. Cell Death Differ 13:374–384

    PubMed  CAS  Google Scholar 

  • Wu HM, Wensley E, Bhave M (2009) Identification and analysis of genes encoding a novel ER-localised Cyclophilin B in wheat potentially involved in storage protein folding. Plant Sci 176:420–432

    CAS  Google Scholar 

  • Yanagisawa S (2001) The transcriptional activation domain of the plant-specific Dof1 factor functions in plant, animal, and yeast cells. Plant Cell Physiol 42:813–822

    PubMed  CAS  Google Scholar 

  • Yanagisawa S (2002) The Dof family of plant transcription factors. Trends Plant Sci 7:555–560

    PubMed  CAS  Google Scholar 

  • Yano H, Wong JH, Lee YM, Cho MJ, Buchanan BB (2001) A strategy for the identification of proteins targeted by thioredoxin. Proc Natl Acad Sci USA 98:4794–4799

    PubMed  CAS  Google Scholar 

  • Zhao H, Wang R, Guo A, Hu S, Sun G (2004) Development of primers specific for LMW-GS genes located on chromosome 1D and molecular characterization of a gene from Glu-D3 complex locus in bread wheat. Hereditas 141:193–198

    PubMed  Google Scholar 

  • Zhao XL, Xia XC, He ZH, Gale KR, Lei ZS, Appels R, Ma W (2006) Characterization of three low-molecular-weight Glu-D3 subunit genes in common wheat. Theor Appl Genet 7:1247–1259

    Google Scholar 

  • Zhao XL, Xia XC, He ZH, Lei ZS, Appels R, Yang Y, Sun QX, Ma W (2007a) Novel DNA variations to characterize low molecular weight glutenin Glu-D3 genes and develop STS markers in common wheat. Theor Appl Genet 114:451–460

    PubMed  CAS  Google Scholar 

  • Zhao XL, Ma W, Gale KR, Lei ZS, He ZH, Sun QX, Xia XC (2007b) Identification of SNPs and development of functional markers for LMW-GS genes at Glu-D3 and Glu-B3 loci in bread wheat (Triticum aestivum L.). Mol Breed 20:223–231

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingguo Ye or Wujun Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

She, M., Ye, X., Yan, Y. et al. Gene networks in the synthesis and deposition of protein polymers during grain development of wheat. Funct Integr Genomics 11, 23–35 (2011). https://doi.org/10.1007/s10142-010-0196-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-010-0196-x

Keywords

Navigation