Skip to main content

Advertisement

Log in

Somatic polyploidy promotes cell function under stress and energy depletion: evidence from tissue-specific mammal transcriptome

  • Review
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Polyploid cells show great among-species and among-tissues diversity and relation to developmental mode, suggesting their importance in adaptive evolution and developmental programming. At the same time, excessive polyploidization is a hallmark of functional impairment, aging, growth disorders, and numerous pathologies including cancer and cardiac diseases. To shed light on this paradox and to find out how polyploidy contributes to organ functions, we review here the ploidy-associated shifts in activity of narrowly expressed (tissue specific) genes in human and mouse heart and liver, which have the reciprocal pattern of polyploidization. For this purpose, we use the modular biology approach and genome-scale cross-species comparison. It is evident from this review that heart and liver show similar traits in response to polyploidization. In both organs, polyploidy protects vitality (mainly due to the activation of sirtuin-mediated pathways), triggers the reserve adenosine-5′-triphosphate (ATP) production, and sustains tissue-specific functions by switching them to energy saving mode. In heart, the strongest effects consisted in the concerted up-regulation of contractile proteins and substitution of energy intensive proteins with energy economic ones. As a striking example, the energy intensive alpha myosin heavy chain (providing fast contraction) decreased its expression by a factor of 10, allowing a 270-fold increase of expression of beta myosin heavy chain (providing slow contraction), which has approximately threefold lower ATP-hydrolyzing activity. The liver showed the enhancement of immunity, reactive oxygen species and xenobiotic detoxication, and numerous metabolic adaptations to long-term energy depletion. Thus, somatic polyploidy may be an ingenious evolutionary instrument for fast adaptation to stress and new environments allowing trade-offs between high functional demand, stress, and energy depletion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adjaye J, Herwig R, Herrmann D, Wruck W, Benkahla A, Brink TC, Nowak M, Carnwath JW, Hultschig C, Niemann H, Lehrach H (2004) Cross-species hybridization of human and bovine orthologous genes on high density cDNA microarrays. BMC Genomics 5:83

    Article  PubMed  Google Scholar 

  • Ahn BH, Kim HS, Song S, Lee IH, Liu J, Vassilopoulos A, Deng CX, Finkel T (2008) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA 105:14447–14452

    Article  PubMed  Google Scholar 

  • Aldrovani M, Mello MS, Guaraldo AM, Vidal BC (2006) Nuclear phenotypes and DNA fragmentation in tendon fibroblasts of NOD mice. Caryologia 59:116–124

    Google Scholar 

  • Amador-Noguez D, Dean A, Huang W, Setchell K, Moore D (2007) Alterations in xenobiotic metabolism in the long-lived Little mice. Aging Cell 6:453–470

    Article  PubMed  Google Scholar 

  • Anatskaya OV, Vinogradov AE (2002) Myocyte ploidy in heart chambers of birds with different locomotor activity. J Exp Zool 293:427–441

    Article  PubMed  Google Scholar 

  • Anatskaya OV, Vinogradov AE (2004a) Heart and liver as developmental bottlenecks of mammal design: evidence from cell polyploidization. Biol J Linn Soc 83:175–186

    Article  Google Scholar 

  • Anatskaya OV, Vinogradov AE (2004b) Paradoxical relationship between protein content and nucleolar activity in mammalian cardiomyocytes. Genome 47:565–578

    Article  PubMed  Google Scholar 

  • Anatskaya OV, Vinogradov AE (2007) Genome multiplication as adaptation to tissue survival: evidence from gene expression in mammalian heart and liver. Genomics 89:70–80

    Article  PubMed  Google Scholar 

  • Anatskaya OV, Sidorenko NV, Vinogradov AE, Beyer TV (2007) Impact of neonatal cryptosporidial gastroenteritis on epigenetic programming of rat hepatocytes. Cell Biol Int 31:420–427

    Article  PubMed  Google Scholar 

  • Anatskaya OV, Sidorenko NV, Beyer TV, Vinogradov AE (2010) Neonatal cardiomyocyte ploidy reveals critical windows of heart development. Int J Cardiol 141:81–91

    Article  PubMed  Google Scholar 

  • Appels R (2009) Diversity of genome research at the 2009 Plant and Animal Genome Conference. Funct Integr Genomics 9:1–6

    Article  PubMed  Google Scholar 

  • Appels R, Barrerro R, Keeble G, Bellgard M (2010) Advances in genome studies: the PAG 2010 conference. Funct Integr Genomics 10:1–9

    Article  PubMed  Google Scholar 

  • Bauer M, Hamm AC, Bonaus M, Jacob A, Jaekel J, Schorle H, Pankratz MJ, Katzenberger JD (2004) Starvation response in mouse liver shows strong correlation with life span-prolonging processes. Physiol Genomics 17:230–244

    Article  PubMed  Google Scholar 

  • Borradaile NM, Pickering JG (2010) Polyploidy impairs human aortic endothelial cell function and is prevented by nicotinamide phosphoribosyltransferase. Am J Physiol Cell Physiol 298:C66–C74

    Article  PubMed  Google Scholar 

  • Bottley A, Koebner RM (2008) Variation for homoeologous gene silencing in hexaploid wheat. Plant J 56:297–302

    Article  PubMed  Google Scholar 

  • Brodsky WY, Uryvaeva IV (1977) Cell polyploidy: its relation to cell growth and function. Int Rev Cytol 50:275–332

    Article  PubMed  Google Scholar 

  • Celton-Morizur S, Merlen G, Couton D, Margall-Ducos G, Desdouets C (2009) The insulin/Akt pathway controls a specific cell division program that leads to generation of binucleated tetraploid liver cells in rodents. J Clin Invest 119:1880–1887

    PubMed  Google Scholar 

  • Celton-Morizur S, Merlen G, Couton D, Desdouets C (2010) Polyploidy and liver proliferation: central role of insulin signalling. Cell Cycle 9:460–466

    Article  PubMed  Google Scholar 

  • Choi JW, Shin CY, Choi MS, Yoon SY, Ryu JH, Lee JC, Kim WK, El Kouni MH, Ko KH (2008) Uridine protects cortical neurons from glucose deprivation-induced death: possible role of uridine phosphorylase. J Neurotrauma 25:695–707

    Article  PubMed  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846

    Article  PubMed  Google Scholar 

  • Croce AC, Ferrigno A, Vairetti M, Bertone R, Freitas I, Bottiroli G (2004) Autofluorescence properties of isolated rat hepatocytes under different metabolic conditions. Photochem Photobiol Sci 3:920–926

    Article  PubMed  Google Scholar 

  • da Huang W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13

    Article  Google Scholar 

  • Edgar BA, Orr-Weaver TL (2001) Endoreplication cell cycles: more for less. Cell 105:297–306

    Article  PubMed  Google Scholar 

  • Erenpreisa J, Kalejs M, Cragg MS (2005) Mitotic catastrophe and endomitosis in tumour cells: an evolutionary key to a molecular solution. Cell Biol Int 29:1012–1008

    Article  PubMed  Google Scholar 

  • Erenpreisa J, Cragg MS, Salmina K, Hausmann M, Scherthan H (2009) The role of meiotic cohesin REC8 in chromosome segregation in gamma irradiation-induced endopolyploid tumour cells. Exp Cell Res 315:2593–2603

    Article  PubMed  Google Scholar 

  • Erokhina IL, Selivanova GV, Vlasova TD, Komarova NI, Emeljanova OI, Soroka VV (1992) Ultrastructure and biosynthetic activity of polyploid atrial myocytes in patients with mitral valve disease. Acta Histochem Suppl 42:293–299

    PubMed  Google Scholar 

  • Essop MF (2007) Cardiac metabolic adaptations in response to chronic hypoxia. J Physiol 584(Pt 3):715–726

    Article  PubMed  Google Scholar 

  • Fontana K, Aldrovani M, de Paoli F, Oliveira HC, de Campos VB, da Cruz-Höfling MA (2008) Hepatocyte nuclear phenotype: the cross-talk between anabolic androgenic steroids and exercise in transgenic mice. Histol Histopathol 23:1367–1377

    PubMed  Google Scholar 

  • Funk-Keenan J, Haire F, Woolard S, Atchley WR (2008) Hepatic endopolyploidy as a cellular consequence of age-specific selection for rate of development in mice. J Exp Zool B Mol Dev Evol 310:385–397

    Article  PubMed  Google Scholar 

  • Galitski T, Saldanha AJ, Styles CA, Lander ES, Fink GR (1999) Ploidy regulation of gene expression. Science 285:251–254

    Article  PubMed  Google Scholar 

  • Ganem NJ, Pellman D (2007) Limiting the proliferation of polyploidy cells. Cell 131:437–440

    Article  PubMed  Google Scholar 

  • Gene Ontology Consortium (2010) The Gene Ontology in 2010: extensions and refinements. Nucleic Acids Res 38:D331–D335

    Article  Google Scholar 

  • Giammona LM, Panuganti S, Kemper JM, Apostolidis PA, Lindsey S, Papoutsakis ET, Miller WM (2009) Mechanistic studies on the effects of nicotinamide on megakaryocytic polyploidization and the roles of NAD + levels and SIRT inhibition. Exp Hematol 37:1340–1352

    Article  PubMed  Google Scholar 

  • Guarente L, Picard F (2005) Calorie restriction—the SIR2 connection. Cell 120:473–482

    Article  PubMed  Google Scholar 

  • Haddad F, Qin AX, Bodell PW, Jiang W, Giger JM, Baldwin KM (2008) Intergenic transcription and developmental regulation of cardiac myosin heavy chain genes. Am J Physiol Heart Circ Physiol 294:H29–H37

    Article  PubMed  Google Scholar 

  • Hallows WC, Albaugh BN, Denu JM (2008) Where in the cell is SIRT3?—functional localization of an NAD+-dependent protein deacetylase. Biochem J 411:e11–e13

    Article  PubMed  Google Scholar 

  • Iacobas DA, Fan C, Iacobas S, Haddad GG (2008) Integrated transcriptomic response to cardiac chronic hypoxia: translation regulators and response to stress in cell survival. Funct Integr Genomics 8:265–275

    Article  PubMed  Google Scholar 

  • Illidge TM, Cragg MS, Fringes B, Olive P, Erenpreisa JA (2000) Polyploid giant cells provide a survival mechanism for p53 mutant cells after DNA damage. Cell Biol Int 24:621–633

    Article  PubMed  Google Scholar 

  • Ingwall JS (2009) Energy metabolism in heart failue and remodelling. Cardiovasc Res 81:412–419

    Article  PubMed  Google Scholar 

  • Irizarry RA, Warren D, Spencer F, Kim IF, Biswal S, Frank BC, Gabrielson E, Garcia JG, Geoghegan J, Germino G, Griffin C, Hilmer SC, Hoffman E, Jedlicka AE, Kawasaki E, Martínez-Murillo F, Morsberger L, Lee H, Petersen D, Quackenbush J, Scott A, Wilson M, Yang Y, Ye SQ, Yu W (2005) Multiple-laboratory comparison of microarray platforms. Nat Meth 2:345–350

    Article  Google Scholar 

  • Ivanov A, Cragg MS, Erenpreisa J, Emzinsh D, Lukman H, Illidge TM (2003) Endopolyploid cells produced after severe genotoxic damage have the potential to repair DNA double strand breaks. J Cell Sci 116:4095–4106

    Article  PubMed  Google Scholar 

  • Joshi-Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, de Bono B, Jassal B, Gopinath GR, Wu GR, Matthews L, Lewis S, Birney E, Stein L (2005) Reactome: a knowledge base of biological pathways. Nucleic Acids Res 33:D428–D432

    Article  PubMed  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hàttori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36 (Database issue):D480–D484

    Google Scholar 

  • Kellerman S, Moore JA, ZierhutW ZHG, Campbell J, Gerdes AM (1992) Nuclear DNA content and nucleation patterns in rat cardiac myocytes from different models of cardiac hypertrophy. J Mol Cell Cardiol 24:497–505

    Article  PubMed  Google Scholar 

  • Kim SY, Volsky DJ (2005) PAGE: parametric analysis of gene set enrichment. BMC Bioinform 6:144

    Article  Google Scholar 

  • Kuntz E, Kuntz H-D (2005) Hepatology. Principles and practice: history, morphology, biochemistry, diagnostics, clinic, therapy. Springer; Heidelberg/New York, 2th ed, 906p.

  • Larkin JE, Frank BC, Gavras H, Sultana R, Quackenbush J (2005) Independence and reproducibility across microarray platforms. Nat Meth 2:337–344

    Article  Google Scholar 

  • Lee HO, Davidson JM, Duronio RJ (2009) Endoreplication: polyploidy with purpose. Genes Dev 23:2461–2477

    Article  PubMed  Google Scholar 

  • Lilly MA, Duronio RJ (2005) New insights into cell cycle control from the Drosophila endocycle. Oncogene 24:2765–2775

    Article  PubMed  Google Scholar 

  • Lu P, Prost S, Caldwell H, Tugwood JD, Betton GR, Harrison DJ (2007) Microarray analysis of gene expression of mouse hepatocytes of different ploidy. Mamm Genome 18:617–626

    Article  PubMed  Google Scholar 

  • McCrann DJ, Nguyen HG, Jones MR, Ravid K (2008) Vascular smooth muscle cell polyploidy: an adaptive or maladaptive response? J Cell Physiol 215:588–592

    Article  PubMed  Google Scholar 

  • McCrann DJ, Yang D, Chen H, Carroll S, Ravid K (2009) Upregulation of Nox4 in the aging vasculature and its association with smooth muscle cell polyploidy. Cell Cycle 8:902–908

    PubMed  Google Scholar 

  • Mehrotra S, Maqbool SB, Kolpakas A, Murnen K, Calvi BR (2008) Endocycling cells do not apoptose in response to DNA rereplication genotoxic stress. Genes Dev 22:3158–3171

    Article  PubMed  Google Scholar 

  • Mello ML, Aldrovani M, Moraes AS, Guaraldo AM, Vidal Bde C (2009) DNA content, chromatin supraorganization, nuclear glycoproteins and RNA amounts in hepatocytes of mice expressing insulin-dependent diabetes. Micron 40:577–585

    Article  PubMed  Google Scholar 

  • Morkin E (2000) Control of cardiac myosin heavy chain gene expression. Microsc Res Tech 50:522–553

    Article  PubMed  Google Scholar 

  • Narolska NA, van Loon RB, Boontje NM, Zaremba R, Penas SE, Russell J, Spiegelenberg SR, Huybregts MA, Visser FC, de Jong JW, van der Velden J, Stienen GJ (2005) Myocardial contraction is 5-fold more economical in ventricular than in atrial human tissue. Cardiovasc Res 65:221–229

    Article  PubMed  Google Scholar 

  • Nowrousian M, Ringelberg C, Dunlap JC, Loros JJ, Kuck U (2005) Cross-species microarray hybridization to identify developmentally regulated genes in the filamentous fungus Sordaria macrospore. Mol Genet Genomics 273:137–149

    Article  PubMed  Google Scholar 

  • Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131(3):452–462

    Article  PubMed  Google Scholar 

  • Papandreou RA, Cairns L, Fontana AL, Lim NC, Denko (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3:187–197

    Article  PubMed  Google Scholar 

  • Paredes S, Maggert KA (2009) Ribosomal DNA contributes to global chromatin regulation. Proc Natl Acad Sci USA 106:17829–17834

    Article  PubMed  Google Scholar 

  • Raslova H, Roy L, Vourc’h C, Le Couedic JP, Brison O, Metivier D, Feunteun J, Kroemer G, Debili N, Vainchenker W (2003) Megakaryocyte polyploidization is associated with a functional gene amplification. Blood 101:541–544

    Article  PubMed  Google Scholar 

  • Romero P, Wagg J, Green ML, Kaiser D, Krummenacker M, Karp PD (2005) Computational prediction of human metabolic pathways from the complete human genome. Genome Biol 6:R2

    Article  PubMed  Google Scholar 

  • Rong J, Feltus FA, Waghmare VN, Pierce GJ, Chee PW, Draye X, Saranga Y, Wright RJ, Wilkins TA, May OL, Smith CW, Gannaway JR, Wendel J, Paterson A (2007) Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 176:2577–2588

    Article  PubMed  Google Scholar 

  • Rumyantsev PP (1977) Interrelations of the proliferation and differentiation processes during cardiac myogenesis and regeneration. Int Rev Cytol 51:186–273

    PubMed  Google Scholar 

  • Sayers EW, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S et al (2009) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 37:D5–D15

    Article  PubMed  Google Scholar 

  • Sakuma S, Pourkheirandish M, Matsumoto T, Koba T, Komatsuda T (2010) Duplication of a well-conserved homeodomain-leucine zipper transcription factor gene in barley generates a copy with more specific functions. Funct Integr Genomics 10:123–133

    Article  PubMed  Google Scholar 

  • Salmina K, Jankevics E, Huna A, Perminov D, Radovica I, Klymenko T, Ivanov A, Jascenko E, Scherthan H, Cragg M, Erenpreisa J (2010) Up-regulation of the embryonic self-renewal network through reversible polyploidy in irradiated p53-mutant tumor cells. Exp Cell Res 2010 (in press) PMID: 20457152

  • Schwer B, Verdin E (2008) Conserved metabolic regulatory functions of sirtuins. Cell Metab 7:104–112

    Article  PubMed  Google Scholar 

  • Schwer B, Bunkenborg J, Verdin RO, Andersen JS, Verdin E (2006) Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci USA 103:10224–10229

    Article  PubMed  Google Scholar 

  • Segal E, Friedman N, Koller D, Regev A (2004) A module map showing conditional activity of expression modules in cancer. Nat Genet 36:1090–1098

    Article  PubMed  Google Scholar 

  • Shen YQ, Burger G (2009) Plasticity of a key metabolic pathway in fungi. Funct Integr Genomics 9:145–151

    Article  PubMed  Google Scholar 

  • Shlomi T, Cabili MN, Herrgård MJ, Palsson BØ, Ruppin E (2008) Network-based prediction of human tissue-specific metabolism. Nat Biotechnol 26:1003–1010

    Article  PubMed  Google Scholar 

  • Sironi M, Menozzi G, Comi GP, Cagliani R, Bresolin N, Pozzoli U (2005) Analysis of intronic conserved elements indicates that functional complexity might represent a major source of negative selection on noncoding sequences. Hum Mol Genet 14:2533–2546

    Article  PubMed  Google Scholar 

  • Storchova Z, Kuffer C (2008) The consequences of tetraploidy and aneuploidy. J Cell Sci 121(Pt 23):3859–3866

    Article  PubMed  Google Scholar 

  • Storchová Z, Breneman A, Cande J, Dunn J, Burbank K, O’Toole E, Pellman D (2006) Genome-wide genetic analysis of polyploidy in yeast. Nature 443:541–547

    Article  PubMed  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440–9445

    Article  PubMed  Google Scholar 

  • Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, Wiltshire T, Orth AP, Vega RG, Sapinoso LM, Moqrich A, Patapoutian A, Hampton GM, Schultz PG, Hogenesch JB (2002) Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci USA 99:4465–4470

    Article  PubMed  Google Scholar 

  • Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 101:6062–6067

    Article  PubMed  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550

    Article  PubMed  Google Scholar 

  • Sundaresan NR, Samant SA, Pillai VB, Rajamohan SB, Gupta MP (2008) SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol 28:6384–63401

    Article  PubMed  Google Scholar 

  • Tchernaenko V, RadlinskaM LL, Halvorson HR, Kashlev M, Lutter LC (2008a) DNA bending in transcription initiation. Biochemistry 47:1885–1895

    Article  PubMed  Google Scholar 

  • Tchernaenko V, Halvorson HR, Kashlev M, Lutter LC (2008b) DNA bubble formation in transcription initiation. Biochemistry 47:1871–1884

    Article  PubMed  Google Scholar 

  • Udall JA, Flagel LE, Cheung F, Woodward AW, Hovav R, Rapp RA, Swanson JM, Lee JJ, Gingle AR, Nettleton D, Town C, Chen ZJ, Wendel JF (2007) Spotted cotton oligonucleotide microarrays for gene expression analysis. BMC Genomics 8:81–89

    Article  PubMed  Google Scholar 

  • Ullah Z, Lee CY, Lilly MA, DePamphilis ML (2009) Developmentally programmed endoreduplication in animals. Cell Cycle 8:1501–1509

    Article  PubMed  Google Scholar 

  • Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T, Kubin T, Braun T, Bober E (2008) Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res 102:703–710

    Article  PubMed  Google Scholar 

  • van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316:575–579

    Article  PubMed  Google Scholar 

  • Vidal BC, Moraes AS, Mello ML (2006) Nucleus image properties assessed by video image analysis in mouse hepatocytes under short lysis for extended chromatin fiber formation. Cytometry 69:1106–1113

    Article  PubMed  Google Scholar 

  • Vinogradov AE (2003) Isochores and tissue-specificity. Nucleic Acids Res 31:5212–5220

    Article  PubMed  Google Scholar 

  • Vinogradov AE, Anatskaya OV (2007) Organismal complexity, cell differentiation and gene expression: human over mouse. Nucleic Acids Res 35:6350–6356

    Article  PubMed  Google Scholar 

  • Vinogradov AE, Anatskaya OV (2009) Loss of protein interactions and regulatory divergence in yeast whole-genome duplicates. Genomics 93:534–542

    Article  PubMed  Google Scholar 

  • Vinogradov AE, Anatskaya OV, Kudryavtsev BN (2001) Relationship of hepatocyte ploidy levels with body size and growth rate in mammals. Genome 44:350–360

    Article  PubMed  Google Scholar 

  • Vliegen HW, van der Laarse A, Cornelisse CJ, Eulderink F (1991) Myocardial changes in pressure overload-induced left ventricular hypertrophy. A study on tissue composition, polyploidization and multinucleation. Eur Heart J 12:488–494

    PubMed  Google Scholar 

  • Walsh S, Pontén A, Fleischmann BK, Jovinge S (2010) Cardiomyocyte cell cycle controls and growth estimation in vivo-an analysis based on cardiomyocyte nuclei. Cardiovasc Res 86:365–373

    Article  PubMed  Google Scholar 

  • Wenger R (2002) Cellular adaptation to hypoxia: O2 sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2 regulate gene Expression. FASEB J 16:1151–1162

    Article  PubMed  Google Scholar 

  • Zinke I (2002) Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar-dependent response. EMBO J 21:6162–6173

    Article  PubMed  Google Scholar 

  • Zybina EV, Zybina TG (1996) Polytene chromosomes in mammalian cells. Int Rev Cytol 165:53–119

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (RFBR) and the Saint Petersburg Foundation for Scientists. We are grateful to Prof. R. Appels and to the anonymous reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga V. Anatskaya.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Table S1

Narrowly expressed genes with different activity in polyploid vs. diploid heart and liver: main specific functions, regulation of transcription, and metabolism (DOC 228 kb; DOC 228 kb)

Table S2

Stress protection, cell signaling, transport, and adhesion (DOC 191 kb; DOC 191 kb)

Table S3

Tissue-specific genes expressed differently in polyploid vs. diploid liver and heart. Genes with unknown functions (DOC 126 kb; DOC 126 kb)

Table S4

The ploidy-associated changes in tissue-specific gene expression revealed by fold test separately for heart and liver (genes related to the same GO categoriy or biological pathway are taken as gene sets); (DOC 153 kb; DOC 153 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anatskaya, O.V., Vinogradov, A.E. Somatic polyploidy promotes cell function under stress and energy depletion: evidence from tissue-specific mammal transcriptome. Funct Integr Genomics 10, 433–446 (2010). https://doi.org/10.1007/s10142-010-0180-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-010-0180-5

Keywords

Navigation