Skip to main content
Log in

The gene structure and promoter region of the vaccine target aminopeptidase H11 from the blood-sucking nematode parasite of ruminants, Haemonchus contortus

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Aminopeptidase H11, an integral membrane glycoprotein present only in the gut of Haemonchus contortus, could provide substantial protection as shown by 90% reduction in fecal egg counts, while its recombinant version expressed in E. coli induced little. To investigate the characteristics further, we amplified mRNA of H11 gene via reverse transcriptase polymerase chain reaction, followed by isolation of its 1,517-bp 5′-flanking region and determination of its genomic organization. The H11 gene contained 25 exons separated by 24 introns and spans 14,959 bp of genomic DNA. Analysis of the 1,517 bp 5′-flanking region of the H11 gene revealed a putative “TATA-less” promoter. Partial sequences of the last exon and its 3′-UTR of H11 isoform H11-4 were also identified upstream to the H11 gene with the same transcription orientation. The 1,517-bp 5′-flanking region and part of the first exon of the H11 gene were subcloned into the vector upstream of green fluorescence protein reporter gene and microinjected into the gonads of Caenorhabditis elegans. The transformed animals exhibited fluorescence in the distal intestine in the L4 larvae stage and adult worms. This study characterized gene structure of aminopeptidase H11, demonstrated different transcriptional pattern of its promoter region between free-living and blood-sucking nematode species, and highlights the utility of C. elegans as a heterologous system to study the biology roles of H11 isoforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrews SJ, Hole NJ, Munn EA, Rolph TP (1995) Vaccination of sheep against haemonchosis with H11, a gut membrane-derived protective antigen from the adult parasite: prevention of the periparturient rise and colostral transfer of protective immunity. Int J Parasitol 25(7):839–46

    Article  CAS  PubMed  Google Scholar 

  • Beck F, Tata F, Chawengsaksophak K (2000) Homeobox genes and gut development. Bioessays 22(5):431–41

    Article  CAS  PubMed  Google Scholar 

  • Boxem M, Tsai CW, Zhang Y, Saito RM, Liu JO (2004) The C. elegans methionine aminopeptidase 2 analog map-2 is required for germ cell proliferation. FEBS Lett 576(1–2):245–50

    Article  CAS  PubMed  Google Scholar 

  • Breathnach R, Chambon P (1981) Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem 50:349–83

    Article  CAS  PubMed  Google Scholar 

  • Bresnick EH, Martowicz ML, Pal S, Johnson KD (2005) Developmental control via GATA factor interplay at chromatin domains. J Cell Physiol 205(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Britton C, McKerrow JH, Johnstone IL (1998) Regulation of the Caenorhabditis elegans gut cysteine protease gene cpr-1: requirement for GATA motifs. J Mol Biol 283(1):15–27

    Article  CAS  PubMed  Google Scholar 

  • Brooks DR, Isaac RE (2004) Nematode aminopeptidases. In: Hooper NM, Lendeckel U (eds) Aminopeptidases in biology and disease. Kluwer Academic/Plenum Press, New York, pp 309–329

    Google Scholar 

  • Brooks DR, Hooper NM, Isaac RE (2003) The Caenorhabditis elegans orthologue of mammalian puromycin-sensitive aminopeptidase has roles in embryogenesis and reproduction. J Biol Chem 278(44):42795–801

    Article  CAS  PubMed  Google Scholar 

  • Bucher P (1990) Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. J Mol Biol 212(4):563–78

    Article  CAS  PubMed  Google Scholar 

  • Chou ST, Khandros E, Bailey LC, Nichols KE, Vakoc CR, Yao Y, Huang Z, Crispino JD, Hardison RC, Blobel GA, Weiss MJ (2009) Graded repression of PU.1/Sfpi1 gene transcription by GATA factors regulates hematopoietic cell fate. Blood 114(5):983–94

    Article  CAS  PubMed  Google Scholar 

  • Couthier A, Smith J, McGarr P, Craig B, Gilleard JS (2004) Ectopic expression of a Haemonchus contortus GATA transcription factor in Caenorhabditis elegans reveals conserved function in spite of extensive sequence divergence. Mol Biochem Parasitol 133(2):241–53

    Article  CAS  PubMed  Google Scholar 

  • Dynan WS, Tjian R (1985) Control of eukaryotic messenger RNA synthesis by sequence-specific DNA-binding proteins. Nature 316(6031):774–8

    Article  CAS  PubMed  Google Scholar 

  • Egan CR, Chung MA, Allen FL, Heschl MF, Van Buskirk CL, McGhee JD (1995) A gut-to-pharynx/tail switch in embryonic expression of the Caenorhabditis elegans ges-1 gene centers on two GATA sequences. Dev Biol 170(2):397–419

    Article  CAS  PubMed  Google Scholar 

  • Fire A, White Harrison S, Dixon D (1990) A modular set of lacZ fusion vectors for studying gene expression in Caenorhabditis elegans. Gene 93:189–98

    Article  CAS  PubMed  Google Scholar 

  • Freund JN, Domon-Dell C, Kedinger M, Duluc I (1998) The Cdx-1 and Cdx-2 homeobox genes in the intestine. Biochem Cell Biol 76(6):957–69

    Article  CAS  PubMed  Google Scholar 

  • Fukushige T, Hawkins MG, McGhee JD (1998) The GATA-factor elt-2 is essential for formation of the Caenorhabditis elegans intestine. Dev Biol 198(2):286–302

    CAS  PubMed  Google Scholar 

  • Fukushige T, Hendzel MJ, Bazett-Jones DP, McGhee JD (1999) Direct visualization of the elt-2 gut-specific GATA factor binding to a target promoter inside the living Caenorhabditis elegans embryo. Proc Natl Acad Sci USA 96(21):11883–8

    Article  CAS  PubMed  Google Scholar 

  • Fukushige T, Goszczynski B, Tian H, McGhee JD (2003) The evolutionary duplication and probable demise of an endodermal GATA factor in Caenorhabditis elegans. Genetics 165(2):575–88

    CAS  PubMed  Google Scholar 

  • Gao X, Sedgwick T, Shi YB, Evans T (1998) Distinct functions are implicated for the GATA-4, -5, and -6 transcription factors in the regulation of intestine epithelial cell differentiation. Mol Cell Biol 18(5):2901–11

    CAS  PubMed  Google Scholar 

  • Graham M, Smith TS, Munn EA, Knox DP, Oliver JJ, Newton SE (1993) Recombinant DNA molecules encoding aminopeptidase enzymes and their use in the preparation of vaccines against helminth infections. Patent no. WO 93/23542

  • Haslam SM, Coles GC, Munn EA, Smith TS, Smith HF, Morris HR, Dell A (1996) Haemonchus contortus glycoproteins contain N-linked oligosaccharides with novel highly fucosylated core structures. J Biol Chem 271:30561–70

    Article  CAS  PubMed  Google Scholar 

  • Heils A, Teufel A, Petri S, Seemann M, Bengel D, Balling U, Riederer P, Lesch KP (1995) Functional promoter and polyadenylation site mapping of the human serotonin (5-HT) transporter gene. J Neural Transm Gen Sect 102(3):247–54

    Article  CAS  PubMed  Google Scholar 

  • Hong X, Bouvier J, Wong MM, Yamagata GY, McKerrow JH (1993) Brugia pahangi: identification and characterization of an aminopeptidase associated with larval molting. Exp Parasitol 76(2):127–33

    Article  CAS  PubMed  Google Scholar 

  • Huang X (1992) A contig assembly program based on sensitive detection of fragment overlaps. Genomics 14(1):18–25

    Article  CAS  PubMed  Google Scholar 

  • Izumi R, Yamada T, Yoshikai S, Sasaki H, Hattori M, Sakaki Y (1992) Positive and negative regulatory elements for the expression of the Alzheimer's disease amyloid precursor-encoding gene in mouse. Gene 112(2):189–95

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Evans T (1996) The Xenopus GATA-4/5/6 genes are associated with cardiac specification and can regulate cardiac-specific transcription during embryogenesis. Dev Biol 174(2):258–70

    Article  CAS  PubMed  Google Scholar 

  • Joshua GW (2001) Functional analysis of leucine aminopeptidase in Caenorhabditis elegans. Mol Biochem Parasitol 113(2):223–32

    Article  CAS  PubMed  Google Scholar 

  • Kaplan RM (2004) Drug resistance in nematodes of veterinary importance: a status report. Trends Parasitol 20(10):477–81

    Article  CAS  PubMed  Google Scholar 

  • Knox DP, Redmond DL, Newlands GF, Skuce PJ, Pettit D, Smith WD (2003) The nature and prospects for gut membrane proteins as vaccine candidates for Haemonchus contortus and other ruminant trichostrongyloids. Int J Parasitol 33(11):1129–37

    Article  CAS  PubMed  Google Scholar 

  • Krause S, Sommer A, Fischer P, Brophy PM, Walter RD, Liebau E (2001) Gene structure of the extracellular glutathione S-transferase from Onchocerca volvulus and its overexpression and promoter analysis in transgenic Caenorhabditis elegans. Mol Biochem Parasitol 117(2):145–154

    Article  CAS  PubMed  Google Scholar 

  • Kuo CH, Kissinger JC (2008) Consistent and contrasting properties of lineage-specific genes in the apicomplexan parasites Plasmodium and Theileria. BMC Evol Biol 8:108

    Article  PubMed  Google Scholar 

  • Laurent V, Brooks DR, Coates D, Isaac RE (2001) Functional expression and characterization of the cytoplasmic aminopeptidase P of Caenorhabditis elegans. Eur J Biochem 268(20):5430–8

    Article  CAS  PubMed  Google Scholar 

  • Laustsen PG, Vang S, Kristensen T (2001) Mutational analysis of the active site of human insulin-regulated aminopeptidase. Eur J Biochem 268(1):98–104

    Article  CAS  PubMed  Google Scholar 

  • Laverriere AC, MacNeill C, Mueller C, Poelmann RE, Burch JB, Evans T (1994) GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J Biol Chem 269(37):23177–84

    CAS  PubMed  Google Scholar 

  • Lilley CJ, Goodchild SA, Atkinson HJ, Urwin PE (2005) Cloning and characterisation of a Heterodera glycines aminopeptidase cDNA. Int J Parasitol 35(14):1577–85

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Dent JA, Beech RN, Prichard RK (2004) Genomic organization of an avermectin receptor subunit from Haemonchus contortus and expression of its putative promoter region in Caenorhabditis elegans. Mol Biochem Parasitol 134(2):267–74

    Article  CAS  PubMed  Google Scholar 

  • Lojda Z, Gossrau R (1980) Study on aminopeptidase A. Histochemistry 67(3):267–90

    Article  CAS  PubMed  Google Scholar 

  • Lowry JA, Atchley WR (2000) Molecular evolution of the GATA family of transcription factors: conservation within the DNA-binding domain. J Mol Evol 50(2):103–15

    CAS  PubMed  Google Scholar 

  • Lyczak R, Zweier L, Group T, Murrow MA, Snyder C, Kulovitz L, Beatty A, Smith K, Bowerman B (2006) The puromycin-sensitive aminopeptidase PAM-1 is required for meiotic exit and anteroposterior polarity in the one-cell Caenorhabditis elegans embryo. Development 133(21):4281–92

    Article  CAS  PubMed  Google Scholar 

  • MacMorris M, Broverman S, Greenspoon S, Lea K, Madej C, Blumenthal T, Spieth J (1992) Regulation of vitellogenin gene expression in transgenic Caenorhabditis elegans: short sequences required for activation of the vit-2 promoter. Mol Cell Biol 12(4):1652–62

    CAS  PubMed  Google Scholar 

  • Maduro MF, Rothman JH (2002) Making worm guts: the gene regulatory network of the Caenorhabditis elegans endoderm. Dev Biol 246(1):68–85

    Article  CAS  PubMed  Google Scholar 

  • Mallo GV, Rechreche H, Frigerio JM, Rocha D, Zweibaum A, Lacasa M, Jordan BR, Dusetti NJ, Dagorn JC, Iovanna JL (1997) Molecular cloning, sequencing and expression of the mRNA encoding human Cdx1 and Cdx2 homeobox. Down-regulation of Cdx1 and Cdx2 mRNA expression during colorectal carcinogenesis. Int J Cancer 74(1):35–44

    Article  CAS  PubMed  Google Scholar 

  • Mallo GV, Soubeyran P, Lissitzky JC, Andre F, Farnarier C, Marvaldi J, Dagorn JC, Iovanna JL (1998) Expression of the Cdx1 and Cdx2 homeotic genes leads to reduced malignancy in colon cancer-derived cells. J Biol Chem 273(22):14030–6

    Article  CAS  PubMed  Google Scholar 

  • Masler EP (2002) Aminopeptidases in Caenorhabditis elegans and Panagrellus redivivus: detection using peptide and non-peptide substrates. J Helminthol 76(1):45–52

    Article  CAS  PubMed  Google Scholar 

  • Masler EP (2007) Characterization of aminopeptidase in the free-living nematode Panagrellus redivivus: subcellular distribution and possible role in neuropeptide metabolism. J Nematol 39(2):153–60

    CAS  PubMed  Google Scholar 

  • McGhee JD, Fukushige T, Krause MW, Minnema SE, Goszczynski B, Gaudet J, Kohara Y, Bossinger O, Zhao Y, Khattra J, Hirst M, Jones SJ, Marra MA, Ruzanov P, Warner A, Zapf R, Moerman DG, Kalb JM (2009) ELT-2 is the predominant transcription factor controlling differentiation and function of the C. elegans intestine, from embryo to adult. Dev Biol 327(2):551–65

    Article  CAS  PubMed  Google Scholar 

  • Mello CC, Kramer JM, Stinchcomb D, Ambros V (1991) Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. Embo J 10(12):3959–70

    CAS  PubMed  Google Scholar 

  • Mizoshita T, Tsukamoto T, Nakanishi H, Inada K, Ogasawara N, Joh T, Itoh M, Yamamura Y, Tatematsu M (2003) Expression of Cdx2 and the phenotype of advanced gastric cancers: relationship with prognosis. J Cancer Res Clin Oncol 129(12):727–34

    Article  CAS  PubMed  Google Scholar 

  • Mount SM (1982) A catalogue of splice junction sequences. Nucleic Acids Res 10(2):459–72

    Article  CAS  PubMed  Google Scholar 

  • Murakami R, Okumura T, Uchiyama H (2005) GATA factors as key regulatory molecules in the development of Drosophila endoderm. Dev Growth Differ 47(9):581–9

    Article  CAS  PubMed  Google Scholar 

  • Murray L, Geldhof P, Clark D, Knox DP, Britton C (2007) (2007) Expression and purification of an active cysteine protease of Haemonchus contortus using Caenorhabditis elegans. Int J Parasitol 37:1117–25

    Article  CAS  PubMed  Google Scholar 

  • Newton SE, Meeusen EN (2003) Progress and new technologies for developing vaccines against gastrointestinal nematode parasites of sheep. Parasite Immunol 25(5):283–96

    Article  CAS  PubMed  Google Scholar 

  • Newton SE, Morrish LE, Martin PJ, Montague PE, Rolph TP (1995) Protection against multiply drug-resistant and geographically distant strains of Haemonchus contortus by vaccination with H11, a gut membrane-derived protective antigen. Int J Parasitol 25(4):511–21

    Article  CAS  PubMed  Google Scholar 

  • Ohneda K, Ohmori S, Ishijima Y, Nakano M, Yamamoto M (2009) Characterization of a functional ZBP-89 binding site that mediates Gata1 gene expression during hematopoietic development. J Biol Chem.

  • Paschinger K, Rendic D, Lochnit G, Jantsch V, Wilson IBH (2004) Molecular basis of anti-horseradish peroxidase staining in Caenorhabditis elegans. J Biol Chem 279:49588–98

    Article  CAS  PubMed  Google Scholar 

  • Patient RK, McGhee JD (2002) The GATA family (vertebrates and invertebrates). Curr Opin Genet Dev 12(4):416–22

    Article  CAS  PubMed  Google Scholar 

  • Pikkarainen S, Tokola H, Kerkela R, Ruskoaho H (2004) GATA transcription factors in the developing and adult heart. Cardiovasc Res 63(2):196–207

    Article  CAS  PubMed  Google Scholar 

  • Prichard R (2001) Genetic variability following selection of Haemonchus contortus with anthelmintics. Trends Parasitol 17(9):445–53

    Article  CAS  PubMed  Google Scholar 

  • Qiu Z, Dyer KD, Xie Z, Radinger M, Rosenberg HF (2009) GATA transcription factors regulate the expression of the human eosinophil-derived neurotoxin (RNase 2) gene. J Biol Chem 284(19):13099–109

    Article  CAS  PubMed  Google Scholar 

  • Rawlings ND, Barrett AJ (1995) Evolutionary families of metallopeptidases. Methods Enzymol 248:183–228

    Article  CAS  PubMed  Google Scholar 

  • Redmond DL, Knox DP (2006) Further protection studies using recombinant forms of Haemonchus contortus cysteine proteinases. Parasite Immunol 28(5):213–9

    Article  CAS  PubMed  Google Scholar 

  • Redmond DL, Clucas C, Johnstone IL, Knox DP (2001) Expression of Haemonchus contortus pepsinogen in Caenorhabditis elegans. Mol Biochem Parasitol 2001(112):125–131

    Article  Google Scholar 

  • Reszka N, Rijsewijk FA, Zelnik V, Moskwa B, Bienkowska-Szewczyk K (2007) Haemonchus contortus: characterization of the baculovirus expressed form of aminopeptidase H11. Exp Parasitol 117(2):208–13

    Article  CAS  PubMed  Google Scholar 

  • Rhoads ML, Fetterer RH (1998) Purification and characterisation of a secreted aminopeptidase from adult Ascaris suum. Int J Parasitol 28(11):1681–90

    Article  CAS  PubMed  Google Scholar 

  • Rhoads ML, Fetterer RH, Urban JF Jr (1997) Secretion of an aminopeptidase during transition of third- to fourth-stage larvae of Ascaris suum. J Parasitol 83(5):780–4

    Article  CAS  PubMed  Google Scholar 

  • Sajid M, Isaac RE (1995) Identification and properties of a neuropeptide-degrading endopeptidase (neprilysin) of Ascaris suum muscle. Parasitology 111(Pt 5):599–608

    Article  CAS  PubMed  Google Scholar 

  • Sajid M, Keating C, Holden-Dye L, Harrow ID, Isaac RE (1996) Metabolism of AF1 (KNEFIRF-NH2) in the nematode, Ascaris suum, by aminopeptidase, endopeptidase and deamidase enzymes. Mol Biochem Parasitol 75(2):159–68

    Article  CAS  PubMed  Google Scholar 

  • Sajid M, Isaac RE, Harrow ID (1997) Purification and properties of a membrane aminopeptidase from Ascaris suum muscle that degrades neuropeptides AF1 and AF2. Mol Biochem Parasitol 89(2):225–34

    Article  CAS  PubMed  Google Scholar 

  • Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–9

    Article  CAS  PubMed  Google Scholar 

  • Silberg DG, Furth EE, Taylor JK, Schuck T, Chiou T, Traber PG (1997) CDX1 protein expression in normal, metaplastic, and neoplastic human alimentary tract epithelium. Gastroenterology 113(2):478–86

    Article  CAS  PubMed  Google Scholar 

  • Silberg DG, Swain GP, Suh ER, Traber PG (2000) Cdx1 and cdx2 expression during intestinal development. Gastroenterology 119(4):961–71

    Article  CAS  PubMed  Google Scholar 

  • Smith WD, Smith SK (1993) Evaluation of aspects of the protection afforded to sheep immunised with a gut membrane protein of Haemonchus contortus. Res Vet Sci 55(1):1–9

    CAS  PubMed  Google Scholar 

  • Smith TS, Munn EA, Graham M, Tavernor AS, Greenwood CA (1993) Purification and evaluation of the integral membrane protein H11 as a protective antigen against Haemonchus contortus. Int J Parasitol 23(2):271–80

    Article  CAS  PubMed  Google Scholar 

  • Smith TS, Graham M, Munn EA, Newton SE, Knox DP, Coadwell WJ, McMichael-Phillips D, Smith H, Smith WD, Oliver JJ (1997) Cloning and characterization of a microsomal aminopeptidase from the intestine of the nematode Haemonchus contortus. Biochim Biophys Acta 1338(2):295–306

    CAS  PubMed  Google Scholar 

  • Soeller WC, Oh CE, Kornberg TB (1993) Isolation of cDNAs encoding the Drosophila GAGA transcription factor. Mol Cell Biol 13(12):7961–70

    CAS  PubMed  Google Scholar 

  • Subramanian V, Meyer B, Evans GS (1998) The murine Cdx1 gene product localises to the proliferative compartment in the developing and regenerating intestinal epithelium. Differentiation 64(1):11–8

    Article  CAS  PubMed  Google Scholar 

  • Tamai Y, Nakajima R, Ishikawa T, Takaku K, Seldin MF, Taketo MM (1999) Colonic hamartoma development by anomalous duplication in Cdx2 knockout mice. Cancer Res 59(12):2965–70

    CAS  PubMed  Google Scholar 

  • Tavernor AS, Smith TS, Langford CF, Munn EA, Graham M (1992) Vaccination of young Dorset lambs against haemonchosis. Parasite Immunol 14(6):645–55

    Article  CAS  PubMed  Google Scholar 

  • Tawill S, LeGoff L, Ali F, Blaxter M, Allen JE (2004) Both free-living and parasitic nematodes induce a characteristic Th2 response that is dependent on the presence of intact glycans. Infect Immun 72:398–07

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–80

    Article  CAS  PubMed  Google Scholar 

  • van Die I, Gomord V, Kooyman FN, van den Berg TK, Cummings RD, Vervelde L (1999) Core α1→3-fucose is a common modification of N-glycans in parasitic helminths and constitutes an important epitope for IgE from Haemonchus contortus infected sheep. FEBS Lett 463:189–93

    Article  PubMed  Google Scholar 

  • Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–34

    Article  CAS  PubMed  Google Scholar 

  • Vervelde L, Van Leeuwen MA, Kruidenier M, Kooyman FN, Huntley JF, Van Die I, Cornelissen AW (2002) Protection studies with recombinant excretory/secretory proteins of Haemonchus contortus. Parasite Immunol 24(4):189–201

    Article  CAS  PubMed  Google Scholar 

  • Vider BZ, Zimber A, Chastre E, Gespach C, Halperin M, Mashiah P, Yaniv A, Gazit A (2000) Deregulated expression of homeobox-containing genes, HOXB6, B8, C8, C9, and Cdx-1, in human colon cancer cell lines. Biochem Biophys Res Commun 272(2):513–8

    Article  CAS  PubMed  Google Scholar 

  • Wilson GA, Bertrand N, Patel Y, Hughes JB, Feil EJ, Field D (2005) Orphans as taxonomically restricted and ecologically important genes. Microbiology 151(Pt 8):2499–501

    Article  CAS  PubMed  Google Scholar 

  • Wolstenholme AJ, Fairweather I, Prichard R, von Samson-Himmelstjerna G, Sangster NC (2004) Drug resistance in veterinary helminths. Trends Parasitol 20(10):469–76

    Article  CAS  PubMed  Google Scholar 

  • Yao X, Kodeboyina S, Liu L, Dzandu J, Sangerman J, Ofori-Acquah SF, Pace BS (2009) Role of STAT3 and GATA-1 interactions in gamma-globin gene expression. Exp Hematol 37(8):889–900

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by grant from the National Natural Science Foundation of China (No. 30771618, 30571395). We would like to thank Dr. Yang CL (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) and Dr. Wang XC (the National Institute of Biological Science, Beijing) for their directions on transgenic technique in C. elegans and gifts of vectors we needed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Fang Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, QJ., Zhang, HL., Jiang, XL. et al. The gene structure and promoter region of the vaccine target aminopeptidase H11 from the blood-sucking nematode parasite of ruminants, Haemonchus contortus . Funct Integr Genomics 10, 589–601 (2010). https://doi.org/10.1007/s10142-010-0172-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-010-0172-5

Keywords

Navigation