Skip to main content
Log in

Insulin, a key regulator of hormone responsive milk protein synthesis during lactogenesis in murine mammary explants

  • Short Communication
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Murine milk protein gene expression requires insulin, hydrocortisone, and prolactin; however, the role of insulin is not well understood. This study, therefore, examined the requirement of insulin for milk protein synthesis. Mammary explants were cultured in various combinations of the lactogenic hormones and global changes in gene expression analysed using Affymetrix microarray. The expression of 164 genes was responsive to insulin, and 18 were involved in protein synthesis at the level of transcription and posttranscription, as well as amino acid uptake and metabolism. The folate receptor gene was increased by fivefold, highlighting a potentially important role for the hormone in folate metabolism, a process that is emerging to be central for protein synthesis. Interestingly, gene expression of two milk protein transcription factors, Stat5a and Elf5, previously identified as key components of prolactin signalling, both showed an essential requirement for insulin. Subsequent experiments in HCll cells confirmed that Stat5a and Elf5 gene expression could be induced in the absence of prolactin but in the presence of insulin. Whereas prolactin plays an essential role in phosphorylating and activating Stat5a, gene expression is only induced when insulin is present. This indicates insulin plays a crucial role in the transcription of the milk protein genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Akers MR (2002) Lactation and the mammary gland. Blackwell Publishing, USA

    Google Scholar 

  • Alnouti Y, Klaassen CD (2008a) Regulation of sulfotransferase enzymes by prototypical microsomal enzyme inducers in mice. J Pharmacol Exp Ther 324(2):612–621

    Article  PubMed  CAS  Google Scholar 

  • Alnouti Y, Klaassen CD (2008b) Tissue distribution, ontogeny, and regulation of aldehyde dehydrogenase (Aldh) enzymes mRNA by prototypical microsomal enzyme inducers in mice. Toxicol Sci 101(1):51–64

    Article  PubMed  CAS  Google Scholar 

  • Bailey LB, Gregory JF 3rd (1999) Folate metabolism and requirements. J Nutr 129(4):779–782

    PubMed  CAS  Google Scholar 

  • Barlowe CK, Appling DR (1988) In vitro evidence for the involvement of mitochondrial folate metabolism in the supply of cytoplasmic one-carbon units. Biofactors 1(2):171–176

    PubMed  CAS  Google Scholar 

  • Barnawell EB (1965) A comparative study of the responses of mammary tissues from several mammalian species to hormones in vitro. J Exp Zool 160(2):189–206

    Article  PubMed  CAS  Google Scholar 

  • Birn H (2006) The kidney in vitamin B12 and folate homeostasis: characterization of receptors for tubular uptake of vitamins and carrier proteins. Am J Physiol Renal Physiol 291(1):F22–36

    Article  PubMed  CAS  Google Scholar 

  • Blanchard AA, Watson PH, Shiu RP, Leygue E, Nistor A, Wong P, Myal Y (2006) Differential expression of claudin 1, 3, and 4 during normal mammary gland development in the mouse. DNA Cell Biol 25(2):79–86

    Article  PubMed  CAS  Google Scholar 

  • Bolander FF Jr, Nicholas KR, Van Wyk JJ, Topper YJ (1981) Insulin is essential for accumulation of casein mRNA in mouse mammary epithelial cells. Proc Natl Acad Sci USA 78(9):5682–5684

    Article  PubMed  CAS  Google Scholar 

  • Brennan AJ (2008) Molecular mechanisms that regulate apoptosis and involution in the mammary gland. The University of Melbourne, Australia

    Google Scholar 

  • Brennan AJ, Sharp JA, Khalil E, Digby MR, Mailer SL, Lefevre CM, Nicholas KR (2008) A population of mammary epithelial cells do not require hormones or growth factors to survive. J Endocrinol 196(3):483–496

    Article  PubMed  CAS  Google Scholar 

  • Brisken C, Rajaram RD (2006) Alveolar and lactogenic differentiation. J Mammary Gland Biol Neoplasia 11(3–4):239–248

    Article  PubMed  Google Scholar 

  • Burdon TG, Demmer J, Clark AJ, Watson CJ (1994) The mammary factor MPBF is a prolactin-induced transcriptional regulator which binds to STAT factor recognition sites. FEBS Lett 350(2–3):177–182

    Article  PubMed  CAS  Google Scholar 

  • Calvert DT, Shennan DB (1996) Evidence for an interaction between cationic and neutral amino acids at the blood-facing aspect of the lactating rat mammary epithelium. J Dairy Res 63(1):25–33

    Article  PubMed  CAS  Google Scholar 

  • Carrascosa JM, Ramos P, Molero JC, Herrera E (1998) Changes in the kinase activity of the insulin receptor account for an increased insulin sensitivity of mammary gland in late pregnancy. Endocrinology 139(2):520–526

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Sadowski HB, Kohanski RA, Wang LH (1997) Stat5 is a physiological substrate of the insulin receptor. Proc Natl Acad Sci USA 94(6):2295–2300

    Article  PubMed  CAS  Google Scholar 

  • Choi SW, Mason JB (2000) Folate and carcinogenesis: an integrated scheme. J Nutr 130(2):129–132

    PubMed  CAS  Google Scholar 

  • Choi KM, Barash I, Rhoads RE (2004) Insulin and prolactin synergistically stimulate beta-casein messenger ribonucleic acid translation by cytoplasmic polyadenylation. Mol Endocrinol 18(7):1670–1686

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Qasba P, Topper YJ (1984) Essential role of insulin in transcription of the rat 25, 000 molecular weight casein gene. Science 226(4680):1326–1328

    Article  PubMed  CAS  Google Scholar 

  • Cook RJ, Lloyd RS, Wagner C (1991) Isolation and characterization of cDNA clones for rat liver 10-formyltetrahydrofolate dehydrogenase. J Biol Chem 266(8):4965–4973

    PubMed  CAS  Google Scholar 

  • Davis SR, Mepham TB (1976) Metabolism of L-(U-14C)valine, L-(U-14C)leucine, L-(U-14C)histidine and L-(U-14C) phenylalanine by the isolated perfused lactating guinea pig mammary gland. Biochem J 156(3):553–560

    PubMed  CAS  Google Scholar 

  • Delcommenne M, Streuli CH (1995) Control of integrin expression by extracellular matrix. J Biol Chem 270(45):26794–26801

    Article  PubMed  CAS  Google Scholar 

  • Gass S, Harris J, Ormandy C, Brisken C (2003) Using gene expression arrays to elucidate transcriptional profiles underlying prolactin function. J Mammary Gland Biol Neoplasia 8(3):269–285

    Article  PubMed  Google Scholar 

  • Girard CL, Matte JJ (1998) Dietary supplements of folic acid during lactation: effects on the performance of dairy cows. J Dairy Sci 81(5):1412–1419

    PubMed  CAS  Google Scholar 

  • Girard C, Matte J (2005) Folic acid and vitamin B12 requirements of dairy cows: a concept to be revised. Livest Prod Sci 98:123–133

    Article  Google Scholar 

  • Goodman GT, Akers RM, Friderici KH, Tucker HA (1983) Hormonal regulation of alpha-lactalbumin secretion from bovine mammary tissue cultured in vitro. Endocrinology 112(4):1324–1330

    Article  PubMed  CAS  Google Scholar 

  • Gouilleux F, Wakao H, Mundt M, Groner B (1994) Prolactin induces phosphorylation of Tyr694 of Stat5 (MGF), a prerequisite for DNA binding and induction of transcription. Embo J 13(18):4361–4369

    PubMed  CAS  Google Scholar 

  • Graulet B, Matte JJ, Desrochers A, Doepel L, Palin MF, Girard CL (2007) Effects of dietary supplements of folic acid and vitamin B12 on metabolism of dairy cows in early lactation. J Dairy Sci 90(7):3442–3455

    Article  PubMed  CAS  Google Scholar 

  • Griinari JM, McGuire MA, Dwyer DA, Bauman DE, Barbano DM, House WA (1997) The role of insulin in the regulation of milk protein synthesis in dairy cows. J Dairy Sci 80(10):2361–2371

    PubMed  CAS  Google Scholar 

  • Groner B, Altiok S, Meier V (1994) Hormonal regulation of transcription factor activity in mammary epithelial cells. Mol Cell Endocrinol 100(1–2):109–114

    Article  PubMed  CAS  Google Scholar 

  • Harris J, Stanford PM, Sutherland K, Oakes SR, Naylor MJ, Robertson FG, Blazek KD, Kazlauskas M, Hilton HN, Wittlin S, Alexander WS, Lindeman GJ, Visvader JE, Ormandy CJ (2006) Socs2 and elf5 mediate prolactin-induced mammary gland development. Mol Endocrinol 20(5):1177–1187

    Article  PubMed  CAS  Google Scholar 

  • Hartmann PE (1973) Changes in the composition and yield of the mammary secretion of cows during the initiation of lactation. J Endocrinol 59(2):231–247

    Article  PubMed  CAS  Google Scholar 

  • Itoh M, Bissell MJ (2003) The organization of tight junctions in epithelia: implications for mammary gland biology and breast tumorigenesis. J Mammary Gland Biol Neoplasia 8(4):449–462

    Article  PubMed  Google Scholar 

  • Jakoby WB, Ziegler DM (1990) The enzymes of detoxication. J Biol Chem 265(34):20715–20718

    PubMed  CAS  Google Scholar 

  • Kansal VK, Sharma R, Rehan G (2000) Characterization of anionic amino acid transport systems in mouse mammary gland. Indian J Exp Biol 38(11):1097–1103

    PubMed  CAS  Google Scholar 

  • Kulski JK, Nicholas KR, Topper YJ, Qasba P (1983) Essentiality of insulin and prolactin for accumulation of rat casein mRNAs. Biochem Biophys Res Commun 116(3):994–999

    Article  PubMed  CAS  Google Scholar 

  • Lemay DG, Neville MC, Rudolph MC, Pollard KS, German JB (2007) Gene regulatory networks in lactation: identification of global principles using bioinformatics. BMC Syst Biol 1:56

    Article  PubMed  CAS  Google Scholar 

  • Li N, Zhang Y, Naylor MJ, Schatzmann F, Maurer F, Wintermantel T, Schuetz G, Mueller U, Streuli CH, Hynes NE (2005) Beta1 integrins regulate mammary gland proliferation and maintain the integrity of mammary alveoli. Embo J 24(11):1942–1953

    Article  PubMed  CAS  Google Scholar 

  • Linzell JL, Mepham TB (1974) Effects of intrammary arterial infusion of essential amino acids in the lactating goat. J Dairy Res 41(1):101–109

    Article  PubMed  CAS  Google Scholar 

  • Litterst CM, Kliem S, Marilley D, Pfitzner E (2003) NCoA-1/SRC-1 is an essential coactivator of STAT5 that binds to the FDL motif in the alpha-helical region of the STAT5 transactivation domain. J Biol Chem 278(46):45340–45351

    Article  PubMed  CAS  Google Scholar 

  • Mackle TR, Bryant AM, Petch SF, Hill JP, Auldist MJ (1999) Nutritional influences on the composition of milk from cows of different protein phenotypes in New Zealand. J Dairy Sci 82(1):172–180

    Article  PubMed  CAS  Google Scholar 

  • Mackle TR, Dwyer DA, Ingvartsen KL, Chouinard PY, Ross DA, Bauman DE (2000) Effects of insulin and postruminal supply of protein on use of amino acids by the mammary gland for milk protein synthesis. J Dairy Sci 83(1):93–105

    Article  PubMed  CAS  Google Scholar 

  • McGuire MA, Dwyer DA, Harrell RJ, Bauman DE (1995) Insulin regulates circulating insulin-like growth factors and some of their binding proteins in lactating cows. Am J Physiol 269(4 Pt 1):E723–730

    PubMed  CAS  Google Scholar 

  • Menzies KK, Lefevre C, Macmillan KL, Nicholas K (2009a) Comparative genomics: a novel approach identified the FOLR1 gene a potential key regulator of milk protein synthesis Mamm Genome. doi:10.1007/s00335-009-9207-4

  • Menzies KK, Lefevre C, Macmillan KL, Nicholas KR (2009b) Insulin regulates milk protein synthesis at multiple levels in the bovine mammary gland. Funct integr genomics 9(2):197–217

    Article  PubMed  CAS  Google Scholar 

  • Mepham TB (1982) Amino acid utilization by lactating mammary gland. J Dairy Sci 65(2):287–298

    Article  PubMed  CAS  Google Scholar 

  • Metzger DE, Xu Y, Shannon JM (2007) Elf5 is an epithelium-specific, fibroblast growth factor-sensitive transcription factor in the embryonic lung. Dev Dyn 236(5):1175–1192

    Article  PubMed  CAS  Google Scholar 

  • Morgan G, Wooding FB (1982) A freeze-fracture study of tight junction structure in sheep mammary gland epithelium during pregnancy and lactation. J Dairy Res 49(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Muller WJ, Neville MC (2001) Introduction: signaling in mammary development and tumorigenesis. J Mammary Gland Biol Neoplasia 6(1):1–5

    Article  PubMed  CAS  Google Scholar 

  • Nagaiah K, Bolander FF Jr, Nicholas KR, Takemoto T, Topper YJ (1981) Prolactin-induced accumulation of casein mRNA in mouse mammary explants: a selective role of glucocorticoid. Biochem Biophys Res Commun 98(2):380–387

    Article  PubMed  CAS  Google Scholar 

  • Naylor MJ, Oakes SR, Gardiner-Garden M, Harris J, Blazek K, Ho TW, Li FC, Wynick D, Walker AM, Ormandy CJ (2005) Transcriptional changes underlying the secretory activation phase of mammary gland development. Mol Endocrinol 19(7):1868–1883

    Article  PubMed  CAS  Google Scholar 

  • Neville MC, McFadden TB, Forsyth I (2002) Hormonal regulation of mammary differentiation and milk secretion. J Mammary Gland Biol Neoplasia 7(1):49–66

    Article  PubMed  Google Scholar 

  • Nguyen DA, Neville MC (1998) Tight junction regulation in the mammary gland. J Mammary Gland Biol Neoplasia 3(3):233–246

    Article  PubMed  CAS  Google Scholar 

  • Nicholas KR, Sankaran L, Topper YJ (1983) A unique and essential role for insulin in the phenotypic expression of rat mammary epithelial cells unrelated to its function in cell maintenance. Biochim Biophys Acta 763(3):309–314

    Article  PubMed  CAS  Google Scholar 

  • Nicholas KR, Tyndale-Biscoe CH (1985) Prolactin-dependent accumulation of alpha-lactalbumin in mammary gland explants from the pregnant tammar wallaby (Macropus eugenii). J Endocrinol 106(3):337–342

    Article  PubMed  CAS  Google Scholar 

  • Oakes SR, Naylor MJ, Asselin-Labat ML, Blazek KD, Gardiner-Garden M, Hilton HN, Kazlauskas M, Pritchard MA, Chodosh LA, Pfeffer PL, Lindeman GJ, Visvader JE, Ormandy CJ (2008) The Ets transcription factor Elf5 specifies mammary alveolar cell fate. Genes Dev 22(5):581–586

    Article  PubMed  CAS  Google Scholar 

  • Oettgen P, Kas K, Dube A, Gu X, Grall F, Thamrongsak U, Akbarali Y, Finger E, Boltax J, Endress G, Munger K, Kunsch C, Libermann TA (1999) Characterization of ESE-2, a novel ESE-1-related Ets transcription factor that is restricted to glandular epithelium and differentiated keratinocytes. J Biol Chem 274(41):29439–29452

    Article  PubMed  CAS  Google Scholar 

  • Oka T (1974) Spermidine in hormone-dependent differentiation of mammary gland in vitro. Science 184(132):78–80

    Article  PubMed  CAS  Google Scholar 

  • Philp JA, Burdon TG, Watson CJ (1996) Differential activation of STATs 3 and 5 during mammary gland development. FEBS Lett 396(1):77–80

    Article  PubMed  CAS  Google Scholar 

  • Ramanathan P, Martin I, Thomson P, Taylor R, Moran C, Williamson P (2007) Genomewide analysis of secretory activation in mouse models. J Mammary Gland Biol Neoplasia 12(4):305–314

    Article  PubMed  Google Scholar 

  • Roh SG, Baik MG, Choi YJ (1994) The effect of lactogenic hormones on protein synthesis and amino acid uptake in rat mammary acinar cell culture at various physiological stages. Int J Biochem 26(4):479–485

    Article  PubMed  CAS  Google Scholar 

  • Rosen JM, Matusik RJ, Richards DA, Gupta P, Rodgers JR (1980) Multihormonal regulation of casein gene expression at the transcriptional and posttransciptional levels in the mammary gland. Recent Prog Horm Res 36:157–193

    PubMed  CAS  Google Scholar 

  • Rudolph MC, McManaman JL, Hunter L, Phang T, Neville MC (2003) Functional development of the mammary gland: use of expression profiling and trajectory clustering to reveal changes in gene expression during pregnancy, lactation, and involution. J Mammary Gland Biol Neoplasia 8(3):287–307

    Article  PubMed  Google Scholar 

  • Saltiel AR, Pessin JE (2002) Insulin signaling pathways in time and space. Trends Cell Biol 12(2):65–71

    Article  PubMed  CAS  Google Scholar 

  • Shane B (1989) Folylpolyglutamate synthesis and role in the regulation of one-carbon metabolism. Vit Horm 45:263–335

    Article  CAS  Google Scholar 

  • Sharma R, Kansal VK (1999) Characteristics of transport systems of l-alanine in mouse mammary gland and their regulation by lactogenic hormones: evidence for two broad spectrum systems. J Dairy Res 66(3):385–398

    Article  PubMed  CAS  Google Scholar 

  • Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang D, Brown M, Bodner S, Grosveld G, Ihle JN (1998) Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93(5):841–850

    Article  PubMed  CAS  Google Scholar 

  • Thomas RS, Ng AN, Zhou J, Tymms MJ, Doppler W, Kola I (2000) The Elf group of Ets-related transcription factors. ELF3 and ELF5. Adv Exp Med Biol 480:123–128

    Article  PubMed  CAS  Google Scholar 

  • Wakao H, Schmitt-Ney M, Groner B (1992) Mammary gland-specific nuclear factor is present in lactating rodent and bovine mammary tissue and composed of a single polypeptide of 89 kDa. J Biol Chem 267(23):16365–16370

    PubMed  CAS  Google Scholar 

  • Wakao H, Gouilleux F, Groner B (1995) Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. Embo J 14(4):854–855

    PubMed  CAS  Google Scholar 

  • Wang DY, Amor V (1971) A study on the effect of insulin on DNA, RNA and protein synthesis in mouse mammary gland tissue in organ culture. J Endocrinol 50(2):241–249

    Article  PubMed  CAS  Google Scholar 

  • Wartmann M, Cella N, Hofer P, Groner B, Liu X, Hennighausen L, Hynes NE (1996) Lactogenic hormone activation of Stat5 and transcription of the beta-casein gene in mammary epithelial cells is independent of p42 ERK2 mitogen-activated protein kinase activity. J Biol Chem 271(50):31863–31868

    Article  PubMed  CAS  Google Scholar 

  • Welch S (1972) Quantitative differences between the human red cell glutamate–pyruvate transaminase phenotypes. Hum Hered 22:190–197

    Article  Google Scholar 

  • Zhou J, Ng AY, Tymms MJ, Jermiin LS, Seth AK, Thomas RS, Kola I (1998) A novel transcription factor, ELF5, belongs to the ELF subfamily of ETS genes and maps to human chromosome 11p13–15, a region subject to LOH and rearrangement in human carcinoma cell lines. Oncogene 17(21):2719–2732

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Chehab R, Tkalcevic J, Naylor MJ, Harris J, Wilson TJ, Tsao S, Tellis I, Zavarsek S, Xu D, Lapinskas EJ, Visvader J, Lindeman GJ, Thomas R, Ormandy CJ, Hertzog PJ, Kola I, Pritchard MA (2005) Elf5 is essential for early embryogenesis and mammary gland development during pregnancy and lactation. Embo J 24(3):635–644

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Dairy Australia and the Co-operative Research Centre for Innovative Dairy Products.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karensa K. Menzies.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM Table 1

Key genes involved in lactation that are differentially expressed in murine mammary explants cultured with IFP. (DOC 98 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menzies, K.K., Lee, H.J., Lefèvre, C. et al. Insulin, a key regulator of hormone responsive milk protein synthesis during lactogenesis in murine mammary explants. Funct Integr Genomics 10, 87–95 (2010). https://doi.org/10.1007/s10142-009-0140-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-009-0140-0

Keywords

Navigation